


# Automation1 iXR3 and XR3 Drive Racks

# HARDWARE MANUAL

Revision 2.08



# GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2016-2022, Aerotech, Inc., All rights reserved.



## Table of Contents

| Automation1 iXR3 and XR3 Drive Racks                                     |    |
|--------------------------------------------------------------------------|----|
| Table of Contents                                                        |    |
| List of Figures                                                          |    |
| List of Tables                                                           |    |
| EU Declaration of Conformity                                             |    |
| Agency Approvals                                                         |    |
| Safety Procedures and Warnings                                           |    |
| Handling and Storage                                                     |    |
| Installation Overview                                                    | 14 |
| Chapter 1: iXR3/XR3 Overview                                             | 15 |
| 1.1. Electrical Specifications                                           |    |
| 1.1.1. System Power Requirements                                         |    |
| 1.2. Mechanical Specifications                                           |    |
| 1.2.1. Mounting and Cooling                                              |    |
| 1.2.2. Dimensions                                                        |    |
| 1.3. Environmental Specifications                                        |    |
| 1.4. Drive and Software Compatibility                                    |    |
| Chapter 2: Installation and Configuration                                | 31 |
| 2.1. Electrical Installation                                             |    |
| 2.1.1. AC Power Connections                                              |    |
| 2.1.2. Minimizing Noise for EMC/CE Compliance                            |    |
| 2.1.3. I/O and Signal Requirements                                       |    |
| 2.1.4. Internal Shunt Option [-SI#]                                      |    |
| 2.2. Motor Power Output Connector                                        |    |
| 2.2.1. Brushless Motor Connections                                       |    |
| 2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing              |    |
| 2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing            |    |
| 2.2.2. DC Brush Motor Connections                                        |    |
| 2.2.2.1. DC Brush Motor Phasing                                          |    |
| 2.2.3. Stepper Motor Connections<br>2.2.3.1. Stepper Motor Phasing       |    |
| 2.2.4. Three Phase Stepper Motor Connections                             |    |
| 2.2.4.1. Stepper Motor Phasing                                           |    |
| 2.3. Feedback Connector                                                  |    |
| 2.3.1. Primary Encoder Inputs                                            |    |
| 2.3.1.1. Square Wave Encoder (Primary)                                   |    |
| 2.3.1.2. Absolute Encoder (Primary)                                      |    |
| 2.3.1.3. Sine Wave Encoder (Primary) [-CT1/-CT2/-CT4 Option]             | 47 |
| 2.3.1.4. Encoder Phasing                                                 |    |
| 2.3.2. Hall-Effect Inputs                                                |    |
| 2.3.3. Thermistor Input                                                  |    |
| 2.3.4. Encoder Fault Input                                               |    |
| 2.3.5. End of Travel and Home Limit Inputs                               |    |
| 2.3.5.1. End of Travel and Home Limit Phasing                            |    |
| 2.3.6. Brake Output<br>2.4. Position Synchronized Output Connector (PSO) |    |
| 2.4.1 PSO Isolated Outputs                                               |    |
| 2.4.2. PSO TTL Outputs                                                   |    |
| 2.4.3. External PSO Synchronization                                      |    |
| 2.4.4. Data Acquisition Inputs                                           |    |
| 2.5. HSOUT Connector (High-Speed Outputs)                                |    |
| 2.6. DOUT Connector (Digital Outputs)                                    |    |
| 2.7. DIN Connector (Digital Inputs)                                      | 68 |
| 2.8. Aux Encoder Connectors                                              |    |
| 2.8.1. Square Wave Encoder (Auxiliary)                                   |    |
| 2.8.2. Absolute Encoder (Auxiliary)                                      |    |
| 2.8.3. Sine Wave Encoder (Auxiliary) [-CT4 Option]                       | 74 |

| <ul> <li>2.10. Safe Torque Off Input (STO)</li> <li>2.10.1. STO Standards</li> <li>2.10.2. STO Functional Description</li> <li>2.10.3. STO Startup Validation Testing</li> <li>2.10.4. STO Diagnostics</li> </ul>                   |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul> <li>2.11. HyperWire Interface</li> <li>2.12. Sync Port</li> <li>2.13. Industrial Ethernet (iXR3 Only)</li> <li>2.14. Cooling Options [-C0/-C1/-C2 Option]</li> <li>2.15. PC Configuration and Operation Information</li> </ul> |          |
| Chapter 3: Maintenance<br>3.1. Preventative Maintenance<br>3.2. Fuse Specifications<br>3.3. Amplifier Replacement                                                                                                                   | 94<br>95 |
| Appendix A: Warranty and Field Service                                                                                                                                                                                              |          |
| Appendix B: Voltage Selection Operation                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                     |          |
| Appendix C: Revision History                                                                                                                                                                                                        |          |

## List of Figures

| Figure 1-1:  | iXR3 Connection Overview                                          | 15 |  |  |
|--------------|-------------------------------------------------------------------|----|--|--|
| Figure 1-2:  | XR3 Connection Overview                                           |    |  |  |
| Figure 1-3:  | Functional Diagram                                                |    |  |  |
| Figure 1-4:  | XR3/XR3 AC Power Label Location                                   |    |  |  |
| Figure 1-5:  | Dimensions with Chassis Slides                                    | 26 |  |  |
| Figure 1-6:  | Dimensions without Chassis Slides                                 |    |  |  |
| Figure 2-1:  | iXR3 Connection Overview                                          |    |  |  |
| Figure 2-2:  | XR3 Connection Overview                                           |    |  |  |
| Figure 2-3:  | Brushless Motor Configuration                                     |    |  |  |
| Figure 2-4:  | Positive Motor Direction                                          |    |  |  |
| Figure 2-5:  | Encoder and Hall Signal Diagnostics                               |    |  |  |
| Figure 2-6:  | Brushless Motor Phasing Oscilloscope Example                      |    |  |  |
| Figure 2-7:  | Brushless Motor Phasing Goal                                      |    |  |  |
| Figure 2-8:  | DC Brush Motor Configuration                                      | 40 |  |  |
| Figure 2-9:  | Positive Motor Direction                                          | 40 |  |  |
| Figure 2-10: | Stepper Motor Configuration                                       | 41 |  |  |
| Figure 2-11: | Positive Motor Direction                                          | 41 |  |  |
| Figure 2-12: | Three Phase Stepper Motor Configuration                           | 42 |  |  |
| Figure 2-13: | Positive Motor Direction                                          |    |  |  |
| Figure 2-14: | Square Wave Encoder Schematic (Feedback Connector)                | 45 |  |  |
| Figure 2-15: | Absolute Encoder Schematic (Feedback Connector)                   |    |  |  |
| Figure 2-16: | Sine Wave Encoder Phasing Reference Diagram                       |    |  |  |
| Figure 2-17: | Sine Wave Encoder Schematic (Feedback Connector)                  |    |  |  |
| Figure 2-18: | Encoder Phasing Reference Diagram (Standard)                      | 49 |  |  |
| Figure 2-19: | Position Feedback in the Diagnostic Display                       | 49 |  |  |
| Figure 2-20: | Hall-Effect Inputs Schematic (Feedback Connector)                 | 50 |  |  |
| Figure 2-21: | Thermistor Input Schematic (Feedback Connector)                   | 51 |  |  |
| Figure 2-22: | Encoder Fault Input Schematic (Feedback Connector)                | 52 |  |  |
| Figure 2-23: | End of Travel and Home Limit Input Connections                    | 54 |  |  |
| Figure 2-24: | End of Travel and Home Limit Input Schematic (Feedback Connector) | 54 |  |  |
| Figure 2-25: | End of Travel and Home Limit Input Diagnostic Display             | 55 |  |  |
| Figure 2-26: | Brake Output Connections (Feedback Connector)                     | 56 |  |  |
| Figure 2-27: | PSO Output Sources Current                                        | 58 |  |  |
| Figure 2-28: | PSO Output Sinks Current                                          | 58 |  |  |
| Figure 2-29: | PSO TTL Outputs Schematic                                         | 59 |  |  |
| Figure 2-30: | PSO Clock Inputs Schematic                                        | 60 |  |  |
| Figure 2-31: | Data Acquisition Input Schematic                                  | 61 |  |  |
| Figure 2-32: | Diagram Showing Axis 1 and Axis 2 High-Speed Outputs              | 63 |  |  |
| Figure 2-33: | Digital Output Schematic                                          | 66 |  |  |
| Figure 2-34: | Digital Outputs Connected in Current Sourcing Mode                | 67 |  |  |
| Figure 2-35: | Outputs Connected in Current Sinking Mode                         | 67 |  |  |
| Figure 2-36: | Digital Input Schematic                                           | 69 |  |  |
| Figure 2-37: | Digital Inputs Connected to Current Sourcing (PNP) Devices        | 70 |  |  |
| Figure 2-38: | Digital Inputs Connected to Current Sinking (NPN) Devices         | 70 |  |  |
| Figure 2-39: | Square Wave Encoder Interface (Aux Encoder Connector)             | 72 |  |  |
| Figure 2-40: | Absolute Encoder Schematic (Aux Encoder Connector)                |    |  |  |
| Figure 2-41: | Sine Wave Encoder Phasing Reference Diagram                       |    |  |  |
| Figure 2-42: | Sine Wave Encoder Schematic (Aux Encoder Connector)               | 75 |  |  |

| Figure 2-43: | Analog Outputs Schematic                              | 77 |
|--------------|-------------------------------------------------------|----|
| Figure 2-44: | Analog Inputs Schematic                               | 78 |
| Figure 2-45: | Joystick Interface Inputs Schematic                   | 79 |
| Figure 2-46: | Joystick Cable Wiring Schematic                       |    |
| Figure 2-47: | Typical STO Configuration                             |    |
| Figure 2-48: | STO Timing                                            | 86 |
| Figure 2-49: | Location of the Rear Fan and Air Flow                 |    |
| Figure 2-50: | -C0 Fan Location and Direction of Air Flow            |    |
| Figure 2-51: | -C1 Model Showing Perforated Covers for External Fans |    |
| Figure 2-52: | -C2 1U Fan Location and Air Flow                      |    |
| Figure 3-1:  | Drive Interface Board                                 |    |
| Figure 3-2:  | Amplifier Removal                                     |    |
| Figure 3-3:  | Slot Details                                          |    |
| Figure B-1:  | Voltage Selection Switch Access                       |    |
|              |                                                       |    |

## **List of Tables**

| Table 1-1:  | Feature Summary                                                        | 17 |  |  |
|-------------|------------------------------------------------------------------------|----|--|--|
| Table 1-2:  | Configurations and Options                                             | 18 |  |  |
| Table 1-3:  | Electrical Specifications                                              |    |  |  |
| Table 1-4:  | PWM Amplifier Electrical Specifications                                |    |  |  |
| Table 1-5:  | Linear Amplifier Electrical Specifications                             | 23 |  |  |
| Table 1-6:  | Mounting Specifications                                                | 25 |  |  |
| Table 1-7:  | Environmental Specifications                                           |    |  |  |
| Table 1-8:  | Drive and Software Compatibility                                       |    |  |  |
| Table 2-1:  | Main AC Power Input Voltages and Current Requirements                  | 33 |  |  |
| Table 2-2:  | I/O and Signal Specifications                                          |    |  |  |
| Table 2-3:  | Maximum Energy That The iXR3/XR3 Can Safely Absorb During Regeneration |    |  |  |
| Table 2-4:  | Motor Power Output Connector Pinout                                    |    |  |  |
| Table 2-5:  | Mating Connector Part Numbers for the Motor Power Output Connector     |    |  |  |
| Table 2-6:  | Hall Signal Diagnostics                                                |    |  |  |
| Table 2-7:  | Feedback Connector Pinout                                              | 43 |  |  |
| Table 2-8:  | Mating Connector Part Numbers for the Feedback Connector               | 43 |  |  |
| Table 2-9:  | Multiplier Options                                                     | 44 |  |  |
| Table 2-10: | Primary Encoder Input Pins on the Feedback Connector                   |    |  |  |
| Table 2-11: | Square Wave Encoder Specifications                                     |    |  |  |
| Table 2-12: | Sine Wave Encoder Specifications                                       | 47 |  |  |
| Table 2-13: | Hall-Effect Feedback Pins on the Feedback Connector                    |    |  |  |
| Table 2-14: | Thermistor Input Pin on the Feedback Connector                         | 51 |  |  |
| Table 2-15: | Encoder Fault Input Pin on the Feedback Connector                      |    |  |  |
| Table 2-16: | End of Travel and Home Limit Pins on the Feedback Connector            |    |  |  |
| Table 2-17: | Brake Output Pins on the Feedback Connector                            |    |  |  |
| Table 2-18: | Brake Output Specifications                                            |    |  |  |
| Table 2-19: | PSO Connector Pinout                                                   |    |  |  |
| Table 2-20: | PSO Specifications                                                     |    |  |  |
| Table 2-21: | PSO Isolated Output Specification                                      |    |  |  |
| Table 2-22: | Isolated Output Pins on the PSO Connector                              |    |  |  |
| Table 2-23: | PSO TTL Outputs Specification                                          |    |  |  |
| Table 2-24: | TTL Output Pins on the PSO Connector                                   |    |  |  |
| Table 2-25: | External PSO Sync Input Pins on the PSO Connector                      |    |  |  |
| Table 2-26: | Data Acquisition Input Pins on the PSO Connector                       |    |  |  |
| Table 2-27: | Data Acquisition Opto-Isolator Input Specifications                    |    |  |  |
| Table 2-28: | High-Speed Output Specifications                                       |    |  |  |
| Table 2-29: | HSOUT Connector Pinout                                                 |    |  |  |
| Table 2-30: | Mating Connector Part Numbers for the HSOUT Connector                  |    |  |  |
| Table 2-31: | Digital Output Specifications                                          |    |  |  |
| Table 2-32: | DOUT Connector Digital Outputs Pinout                                  |    |  |  |
| Table 2-33: | Mating Connector Part Numbers for the DOUT Connector                   |    |  |  |
| Table 2-34: | DIN Connector Digital Inputs Pinout                                    |    |  |  |
| Table 2-35: | Mating Connector Part Numbers for the DIN Connector                    |    |  |  |
| Table 2-36: | Digital Input Specifications                                           |    |  |  |
| Table 2-37: | Aux Encoder Connector Pinout                                           |    |  |  |
| Table 2-38: | Mating Connector Part Numbers for the Aux Encoder Connectors           |    |  |  |
| Table 2-39: | Square Wave Encoder Specifications                                     |    |  |  |
| Table 2-40: | Sine Wave Encoder Specifications                                       |    |  |  |
|             |                                                                        |    |  |  |

| Table 2-41: | Analog I/O Connector Pinout                                     | 76 |
|-------------|-----------------------------------------------------------------|----|
| Table 2-42: | Mating Connector Part Numbers for the Analog I/O Connectors     | 76 |
| Table 2-43: | Analog Output Specifications                                    | 77 |
| Table 2-44: | Analog Output Pins on the Analog I/O Connector                  | 77 |
| Table 2-45: | Analog Input Specifications                                     |    |
| Table 2-46: | Analog Input Pins on the Analog I/O Connector                   | 78 |
| Table 2-47: | Joystick Interface Pins on the Analog I/O Connectors            | 79 |
| Table 2-48: | STO Connector Pinout                                            |    |
| Table 2-49: | Mating Connector Part Numbers for the STO Connector             |    |
| Table 2-50: | STO Electrical Specifications                                   |    |
| Table 2-51: | STO Standards                                                   |    |
| Table 2-52: | STO Standards Data                                              |    |
| Table 2-53: | STO Signal Delay                                                | 85 |
| Table 2-54: | Motor Function Relative to STO Input State                      |    |
| Table 2-55: | STO Timing                                                      | 86 |
| Table 2-56: | HyperWire Card Part Number                                      |    |
| Table 2-57: | HyperWire Cable Part Numbers                                    |    |
| Table 2-58: | Sync-Related Functions                                          |    |
| Table 2-59: | Sync Port Cables                                                |    |
| Table 2-60: | -C1 Option Airflow Specifications                               | 90 |
| Table 3-1:  | LED Description                                                 |    |
| Table 3-2:  | Troubleshooting                                                 | 93 |
| Table 3-3:  | Preventative Maintenance                                        |    |
| Table 3-4:  | Drive Interface Board Motor Power Fuse Replacement Part Numbers |    |
| Table B-1:  | AC Voltage Selector Switch Settings                             |    |

## **EU Declaration of Conformity**

| Manufacturer | Aerotech, Inc.            |
|--------------|---------------------------|
| Address      | 101 Zeta Drive            |
|              | Pittsburgh, PA 15238-2811 |
|              | USA                       |
| Product      | iXR3/XR3                  |
| Model/Types  | All                       |

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

| 2014/30/EU  | Electromagnetic Compatibility (EMC | ] |
|-------------|------------------------------------|---|
| 2014/35/EU  | Low Voltage Directive              |   |
| 2006/42/EC  | Machinery Directive                |   |
| 2011/65/EU  | RoHS 2 Directive                   |   |
| EU 2015/863 | Amendment RoHS 3 Directive         |   |
|             |                                    |   |

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61010-1:2010/A1:2016 EN 61800-3:2004/A1:2011 IEC 61800-5-1:2016 IEC 61800-5-2:2016 EN 55011:2000/A2:2003 EN 55022:1998

Authorized Representative

Engineer Verifying Compliance

Date

Safety Requirements for Electrical Equipment EMC Requirements for Power Drives Electrical Safety for Power Drive Systems Functional Safety for Power Drive Systems Conducted and Radiated Emissions Conducted and Radiated Emissions

Kanne

/ Simon Smith, European Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK

(llox Nohrenber / Alex Weibel

Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA 3/17/2022

CE

## **Agency Approvals**

Aerotech tested its XR3 drive racks and found that they obey the standards that follow:

| IMPORTANT: iXR:                                                | 3 certification is pending.                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approval:<br>Approving Agency:<br>Certificate #:<br>Standards: | CUS NRTL<br>TUV SUD America Inc.<br>U8 068995 0027 Rev. 02<br>CAN/CSA-C22.2 No. 61010-1:2012,<br>EN 61010-1:2010/A1:2016,<br>UL 61010-1:2012                                                                                                                                                                           |
| Approval:<br>Approving Agency:<br>Certificate #:<br>Standards: | Safety Components (STO)<br>TUV SUD<br>Z10 068995 0030 Rev. 00<br>EN ISO 13849-1:2015 (up to PL e),<br>IEC 61508-1:2010 (up to SIL3),<br>IEC 61508-2:2010 (up to SIL3),<br>IEC 61800-5-2:2016,<br>IEC 62061:2005 (up to SILCL3),<br>IEC 62061:2005/AMD1:2012 (up to SILCL3),<br>IEC 62061:2005/AMD2:2015 (up to SILCL3) |

Visit https://www.tuev-sued.de/product-testing/certificates to view Aerotech's TÜV SÜD certificates. Type the certificate number listed above in the search bar or type "Aerotech" for a list of all Aerotech certificates.

## **Safety Procedures and Warnings**

**IMPORTANT**: This manual tells you how to carefully and correctly use and operate the drive rack.

• Read all parts of this manual before you install or operate the drive rack or before you do maintenance to your system.



- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

**IMPORTANT**: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.



The voltage can cause shock, burn, or death.



You are at risk of physical injury. You could damage the drive rack.



A surface can be hot enough to burn you.



Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.



Components are sensitive to electrostatic discharge.



Unsecured cables could cause you to:

- trip and fall
- drag the product off of its mounting location
- damage the cable connections.



A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)
- If applicable, do not lift unassisted

**DANGER**: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- 1. Before you do maintenance to the equipment, disconnect the electrical power.
- 2. Restrict access to the drive rack when it is connected to a power source.
- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- 4. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 5. Supply each operator with the necessary protection from live electrical circuits.
- 6. Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- 7. Install the necessary precautions to supply safety and protection to the operator.



**DANGER**: System travel can cause crush, shear, or pinch injuries. Restrict access to all motor and stage parts while your system is connected to a power source.

**WARNING**: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Make sure that all system cables are correctly attached and positioned.
- 2. Do not use the cables or the connectors to lift or move this product.
- 3. Use this product only in environments and operating conditions that are approved in this manual.
- 4. Only trained operators should operate this equipment.

## **Handling and Storage**

### Unpacking the drive rack

**IMPORTANT**: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the drive rack is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

### Handling

**IMPORTANT**: It is the responsibility of the customer to safely and carefully lift and move the drive rack.

- Be careful when you move or transport the drive rack.
- Refer to Section 1.2. Mechanical Specifications for dimensions and weight specifications.
- Retain the shipping materials for future use.
- Transport or store the drive rack in its protective packaging.

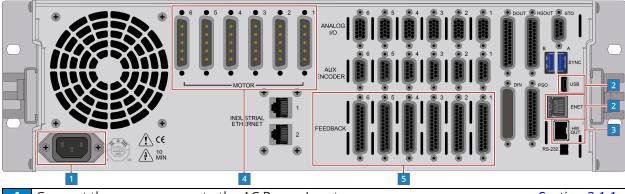
### WARNING: Electrostatic Discharge (ESD) Sensitive Components!



You could damage the power supply or drives if you fail to observe the correct ESD practices.

Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

### Storage


Store the drive rack in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the drive rack in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to Section 1.3. Environmental Specifications

## **Installation Overview**

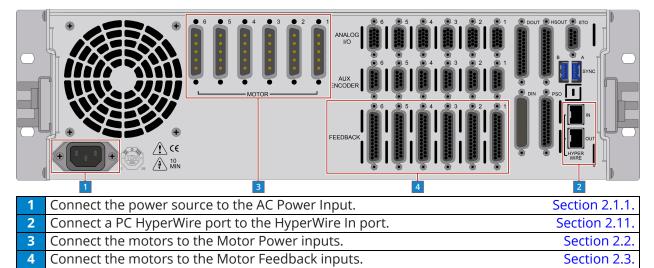

The images that follow show the order in which to make connections and settings that are typical to the iXR3/XR3. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

Figure 1: Installation Connection Overview for the iXR3



| 1 | 1Connect the power source to the AC Power Input.Section 2.1     |               |
|---|-----------------------------------------------------------------|---------------|
| 2 | Connect the PC to the USB or Ethernet port.                     | N/A           |
| 3 | Connect the next drive in the system to the HyperWire Out port. | Section 2.11. |
| 4 | Connect the motors to the Motor Power inputs.                   | Section 2.2.  |
| 5 | Connect the motors to the Motor Feedback inputs.                | Section 2.3.  |

Figure 2: Installation Connection Overview for the XR3



# Chapter 1: iXR3/XR3 Overview

The iXR3/XR3 are high-performance, 6-axis drive racks with field replaceable front-mounted amplifiers. All versions are 3U in size and rack-mountable.

- The iXR3 runs the Automation1-iSMC controller to generate commands for itself as well as for additional drives on the chain.
- The XR3 is based on the HyperWire communication protocol and receives commands from a PC or drive-based controller.

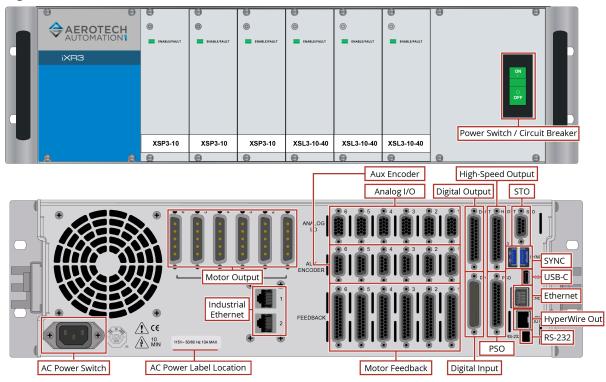
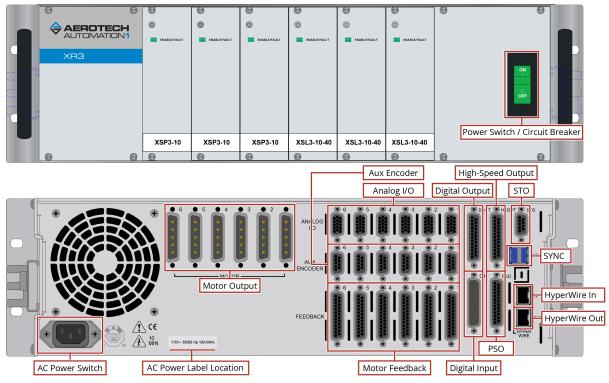




Figure 1-1: iXR3 Connection Overview



### Figure 1-2: XR3 Connection Overview

### Table 1-1: Feature Summary

### Standard Features

- Two independent bus supplies (factory configured) (Section 1.1.)
- Linear or PWM amplifiers (Section 1.1.)
- Software configurable for brush, brushless, ceramic, and stepper motor operation (Section 2.2.)
- 6 channels of line driver square wave or optional analog sine wave quadrature encoder position and/or velocity feedback (Section 2.3.)
- Single axis PSO (Laser Firing) standard (2- and 3-axis firing optional) (Section 2.4.)
- One 10/100/1000 BASE-T Ethernet Port (iXR3 Only)
- One USB 2.0 Type C Port (iXR3 Only)
- Two 10/100/1000 BASE-T Industrial Ethernet Ports (iXR3 Only)

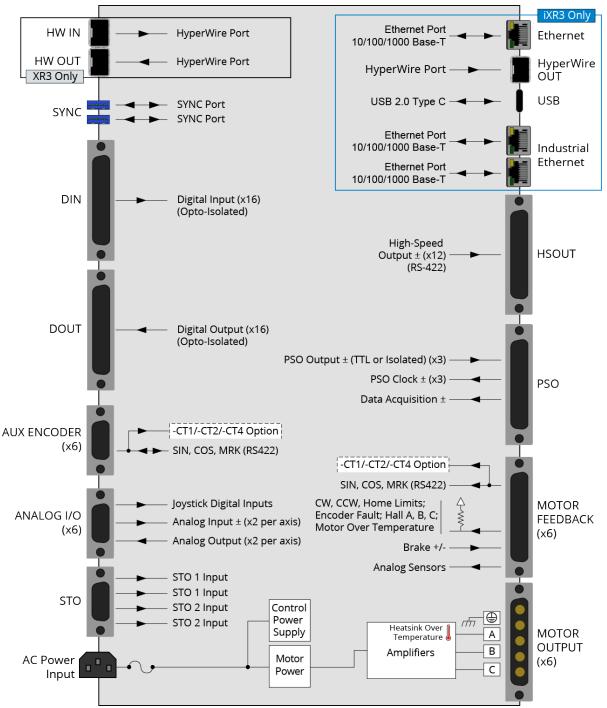
### **Auxiliary Power Outputs**

- +5 V provided on all axis feedback connectors for encoder, Hall, and limit power (Section 2.3.)
- +5 V provided on I/O connectors (Section 2.8.)

**I/O** 

- Brake Output (Section 2.3.)
- Three PSO External Sync inputs (Section 2.4.)
- Three TTL or isolated PSO outputs (Section 2.4.2.)
- One Data Acquisition Input (Section 2.4.4.)
- Up to 12 High Speed Differential outputs (Section 2.5.)
- 16 digital outputs (Section 2.6.)
- 16 digital inputs (Section 2.7.)
- Two 16-bit analog outputs per axis (Section 2.9.1.)
- Two 16-bit differential analog inputs per axis; two inputs used for joystick inputs (Section 2.9.2.)
- Three dedicated joystick digital inputs (Section 2.9.3.)
- Two STO sense Inputs (Section 2.10.)

### Feedback / Limit Inputs


- Encoder / Marker Inputs (primary) (Section 2.3.1.)
- Hall Inputs (3 per axis) (Section 2.3.2.)
- Four analog sensor inputs per axis with one used as a motor over-temperature input and one used as an encoder fault input
  - Thermistor (Section 2.3.3.)
  - Encoder Fault (Section 2.3.4.)
- CW, CCW, and Home Limit Inputs (Section 2.3.5.)
- Encoder / Marker Inputs (auxiliary) (Section 2.8.)

## Table 1-2:Configurations and Options

| Input I  | Line Voltage                                               |           |                                                     |
|----------|------------------------------------------------------------|-----------|-----------------------------------------------------|
| -VL1     | 115 VAC                                                    |           |                                                     |
| -VL2     | 230 VAC                                                    |           |                                                     |
| -VL3     | 100 VAC                                                    |           |                                                     |
| -VL4     | 200 VAC                                                    |           |                                                     |
| Bus Vo   | ltage 1 and Bus Voltage 2 Configurations                   |           |                                                     |
|          | Bus Voltage 1 (Required)                                   |           | Bus Voltage 2 (Optional)                            |
|          |                                                            | -VB0      | Not wired (Bus Voltage 2 only)                      |
| -VB1     | ±10 VDC (200 W Power Supply), bipolar                      | -VB1      | ±10 VDC (200 W Power Supply), bipolar               |
| -VB2     | ±20 VDC (200 W Power Supply), bipolar                      | -VB2      | ±20 VDC (200 W Power Supply), bipolar               |
| -VB3     | ±30 VDC (200 W Power Supply), bipolar                      | -VB3      | ±30 VDC (200 W Power Supply), bipolar               |
| -VB4     | ±40 VDC (300 W Power Supply), bipolar                      | -VB4      | ±40 VDC (300 W Power Supply), bipolar               |
| -VB5     | ±80 VDC (300 W Power Supply), bipolar                      | -VB5      | ±80 VDC (300 W Power Supply), bipolar               |
| -VB7     | 160 VDC, unipolar                                          | -VB7      | 160 VDC, unipolar                                   |
| -VB8     | 320 VDC, unipolar                                          | -VB8      | 320 VDC, unipolar                                   |
| Split B  | us Options                                                 | <u>.</u>  |                                                     |
| -SB0     | No split, Axis 1-6 Bus Voltage 1                           |           |                                                     |
| -SB1     | Axis 1 Bus Voltage 1, Axis 2-6 Bus Voltage 2               |           |                                                     |
| -SB2     | Axis 1-2 Bus Voltage 1, Axis 3-6 Bus Voltage 2             |           |                                                     |
| -SB3     | Axis 1-3 Bus Voltage 1, Axis 4-6 Bus Voltage 2             |           |                                                     |
| -SB4     | Axis 1-4 Bus Voltage 1, Axis 5-6 Bus Voltage 2             |           |                                                     |
| -SB5     | -SB5 Axis 1-5 Bus Voltage 1, Axis 6 Bus Voltage 2          |           |                                                     |
| Axis Co  | ontrol Board (Section 2.3.1.3.)                            |           |                                                     |
|          | Axis 1 (Required)                                          |           | Axis 2-6 (Optional)                                 |
| -CT0     | No control board                                           | 0         | No control board                                    |
| -CTN     | No multiplier                                              | Ν         | No multiplier                                       |
| -CT1     | Primary feedback multiplier (standard performance)         | 1         | Primary feedback multiplier (standard performance)  |
| -CT2     | Primary feedback multiplier (high<br>performance)          | 2         | Primary feedback multiplier (high<br>performance)   |
| -CT4     | Primary and auxiliary multiplier (high performance)        | 4         | Primary and auxiliary multiplier (high performance) |
| Note: "- | CT" is applied to the first axis option only. A three axis | order wo  |                                                     |
| Axis A   | mplifier (Section 1.1.)                                    |           |                                                     |
|          | Axis 1 (Required)                                          |           | Axis 2-6 (Optional)                                 |
| -P0      | None                                                       | P0        | None                                                |
| -P1      | XSP3-10 PWM amplifier                                      | P1        | XSP3-10 PWM amplifier                               |
| -P2      | XSP3-20 PWM amplifier                                      | P2        | XSP3-20 PWM amplifier                               |
| -P3      | XSP3-30 PWM amplifier                                      | P3        | XSP3-30 PWM amplifier                               |
| -L1      | XSL3-10-40 linear amplifier                                | L1        | XSL3-10-40 linear amplifier                         |
| Note: "- | is applied to the first axis option only. A three axis or  | der would | look like: -P1P1P1.                                 |

| Cooling Options (Section 2.14.) |                                                                                                                                                       |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -C0                             | Built-in fan pulls cooling air from left side through the amplifier compartment                                                                       |  |  |
| -C1                             | No cooling fan. External cooling through vented covers is required.                                                                                   |  |  |
| -C2                             | 1U-high fan tray for cooling                                                                                                                          |  |  |
| <b>Mounting Options (Sect</b>   | tion 1.2.)                                                                                                                                            |  |  |
| -MT0                            | Rack-mounted configuration                                                                                                                            |  |  |
| -MT1                            | Rack-mounted configuration with drawer slides                                                                                                         |  |  |
| Line Cord Options               |                                                                                                                                                       |  |  |
| -LC0                            | No line cord                                                                                                                                          |  |  |
| -LC1                            | U.S. 115 VAC line cord                                                                                                                                |  |  |
| -LC2                            | U.S. 230 VAC line cord                                                                                                                                |  |  |
| -LC3                            | German compatible line cord                                                                                                                           |  |  |
| -LC4                            | U.K. compatible line cord                                                                                                                             |  |  |
| -LC5                            | Israel compatible line cord                                                                                                                           |  |  |
| -LC6                            | India compatible line cord                                                                                                                            |  |  |
| -LC7                            | Australia compatible line cord                                                                                                                        |  |  |
| PSO (Section 2.4.)              |                                                                                                                                                       |  |  |
| -PSO1                           | One-axis PSO firing (includes One-axis Part-Speed PSO)                                                                                                |  |  |
| -PSO2                           | Two-axis PSO firing (includes Two-axis Part-Speed PSO)                                                                                                |  |  |
| -PSO3                           | Three-axis PSO firing (includes Three-axis Part-Speed PSO)                                                                                            |  |  |
| -PSO5                           | Two-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of up to 2 axes (includes One-Axis PSO). |  |  |
|                                 | Three-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the                                                                  |  |  |
| -PSO6                           | commanded vector velocity of 3 or more axes (includes One-Axis PSO).                                                                                  |  |  |
| Internal Shunt (Section         |                                                                                                                                                       |  |  |
| -SIO                            | No internal shunt                                                                                                                                     |  |  |
| -SI1                            | Internal shunt for first bus                                                                                                                          |  |  |
| -SI2                            | Internal shunt for second bus                                                                                                                         |  |  |
| -SI3                            | Internal shunt for first and second bus                                                                                                               |  |  |
| Version                         |                                                                                                                                                       |  |  |
| -DEFAULT                        | Firmware Matches Software Line                                                                                                                        |  |  |
| -LEGACY                         | Legacy Firmware Version X.XX.XXX                                                                                                                      |  |  |

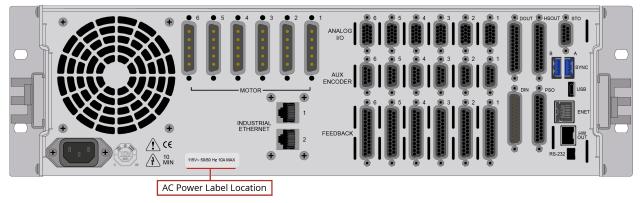
The block diagram that follows shows a summary of the connector signals.



### Figure 1-3: Functional Diagram

## **1.1. Electrical Specifications**

The electrical specifications for the drive rack are listed in Table 1-3 and the electrical specifications for the servo amplifiers in Table 1-4 and Table 1-5.




**IMPORTANT**: These electrical specifications represent the maximum capability of a feature. System constraints can result in lower performance. For example, the motor output specifications are affected by the Bus supply, the number of axes that are operating at the same time, the type of motion, the AC Line voltage, and motor requirements.

The power label shows the factory-configured AC power requirements (Figure 1-4).

**DANGER**: Update the AC power label if you reconfigure the AC Input Voltage.

### Figure 1-4: iXR3/XR3 AC Power Label Location



| Table 1-3: Electrical Specifications        |        |                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Description                                 | Option | Specification                                                                                                                                                                                                                                                                                                                          |  |
|                                             | -VB1   | ±10 VDC (200 W Power Supply), bipolar                                                                                                                                                                                                                                                                                                  |  |
|                                             | -VB2   | ±20 VDC (200 W Power Supply), bipolar                                                                                                                                                                                                                                                                                                  |  |
| Due Valtage Options                         | -VB3   | ±30 VDC (200 W Power Supply), bipolar                                                                                                                                                                                                                                                                                                  |  |
| Bus Voltage Options<br>[Factory Configured] | -VB4   | ±40 VDC (300 W Power Supply), bipolar                                                                                                                                                                                                                                                                                                  |  |
| [Factory Configured]                        | -VB5   | ±80 VDC (300 W Power Supply), bipolar                                                                                                                                                                                                                                                                                                  |  |
|                                             | -VB7   | +160 VDC, unipolar                                                                                                                                                                                                                                                                                                                     |  |
|                                             | -VB8   | +320 VDC, unipolar                                                                                                                                                                                                                                                                                                                     |  |
|                                             | -VL1   | 115 VAC, 10 A Maximum                                                                                                                                                                                                                                                                                                                  |  |
| Input Current                               | -VL2   | 230 VAC, 5 A Maximum                                                                                                                                                                                                                                                                                                                   |  |
| Input Current                               | -VL3   | 100 VAC, 10 A Maximum                                                                                                                                                                                                                                                                                                                  |  |
|                                             | -VL4   | 200 VAC, 5 A Maximum                                                                                                                                                                                                                                                                                                                   |  |
| AC Power Input                              |        | AC input (Switch Selectable): AC Hi, AC Lo, Earth Ground (⊕),<br>• 100 VAC (90-112 VAC, 50/60 Hz)<br>• 115 VAC (103-127 VAC, 50/60 Hz)<br>• 200 VAC (180-224 VAC, 50/60 Hz)<br>• 230 VAC (207-254 VAC, 50/60 Hz)<br>Note: If the iXR3/XR3 contains an offline Bus power supply, the AC Input will<br>be limited to one AC input range. |  |
| Inrush Current                              |        | 32 A Peak                                                                                                                                                                                                                                                                                                                              |  |
| Auxiliary Power Outputs                     |        | +5 V provided on all axis feedback connectors for encoder,<br>Hall, and limit power.<br>+5 V provided on I/O connectors                                                                                                                                                                                                                |  |
|                                             |        | The AC power cord serves as the mains breaker and provides 10 A, Supplemental Protection only.                                                                                                                                                                                                                                         |  |
|                                             |        | Internal Bus supply fusing.                                                                                                                                                                                                                                                                                                            |  |
| Protection                                  |        | Amplifier Output short circuit protection.                                                                                                                                                                                                                                                                                             |  |
|                                             |        | Peak and RMS over current limit.                                                                                                                                                                                                                                                                                                       |  |
|                                             |        | Over Temperature shutdown.                                                                                                                                                                                                                                                                                                             |  |
|                                             |        | Bus supply inrush current limit during initial power-on.                                                                                                                                                                                                                                                                               |  |
| Indicator (Power)                           |        | Opto and transformer isolation between control and power stages.                                                                                                                                                                                                                                                                       |  |
| Indicator (Enabled)                         |        | Power switch contains a power-on indicator.                                                                                                                                                                                                                                                                                            |  |
| Protection                                  |        | Individual Amplifier LED's indicates drive enabled state.                                                                                                                                                                                                                                                                              |  |
|                                             |        |                                                                                                                                                                                                                                                                                                                                        |  |

## Table 1-3:Electrical Specifications

#### Table 1-4: **PWM Amplifier Electrical Specifications**

| XSP3-10                             | XSP3-20                 | XSP3-30                                                                                                                                                            |
|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -P1                                 | -P2                     | -P3                                                                                                                                                                |
| 10 A (pk)                           | 20 A (pk)               | 30 A (pk)                                                                                                                                                          |
| 5 A                                 | 10 A                    | 10 A                                                                                                                                                               |
| 320 VDC                             |                         |                                                                                                                                                                    |
| 2 kHz                               |                         |                                                                                                                                                                    |
| 20 kHz                              |                         |                                                                                                                                                                    |
| 0.1 mH @ 160 VDC (1.0 mH @ 320 VDC) |                         |                                                                                                                                                                    |
| 75 °C (All Amplifiers)              |                         |                                                                                                                                                                    |
|                                     | -P1<br>10 A (pk)<br>5 A | -P1       -P2         10 A (pk)       20 A (pk)         5 A       10 A         320 VDC       320 VDC         2 kHz       20 kHz         0.1 mH @ 160 VDC (1.0 mH @ |

suppiy

2. Peak and continuous output current is load dependent. The controller will limit its output current based on velocity and motor resistance.

3. Selectable through parameters.

#### **Linear Amplifier Electrical Specifications Table 1-5:**

|                                                                                                                                                                                                                                                                                                                                                                                             | XSL3-10-40 <sup>(5)(6)(7)(8)</sup>                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Option Code                                                                                                                                                                                                                                                                                                                                                                                 | -L1                                                                         |  |
| Continuous Output Current,<br>±40V bus (A <sub>pk</sub> ) <sup>(2)(3)(4)</sup>                                                                                                                                                                                                                                                                                                              | 1.5 A   2.0 A   1.0 A                                                       |  |
| Peak Current (A <sub>pk</sub> )                                                                                                                                                                                                                                                                                                                                                             | 10 A <sup>(1)</sup>                                                         |  |
| Maximum Continuous Total<br>Power Dissipation <sup>(3)(4)</sup>                                                                                                                                                                                                                                                                                                                             | 120 W   160 W   120 W                                                       |  |
| Peak Amplifier Power<br>Dissipation per phase                                                                                                                                                                                                                                                                                                                                               | 400 W                                                                       |  |
| Effective Heatsink Thermal<br>Resistance <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                     | 0.42°C/W   0.31°C/W   0.42°C/W                                              |  |
| Maximum Transistor Temperature                                                                                                                                                                                                                                                                                                                                                              | 75°C                                                                        |  |
| Time to reach maximum<br>temperature at maximum 20 minutes<br>continuous power                                                                                                                                                                                                                                                                                                              |                                                                             |  |
| <ul> <li>sales engineer for more information.</li> <li>(2) This specification assumes a motor windin</li> <li>(3) The first number is for a stationary AC or<br/>number is for a stepper motor.</li> <li>(4) The specification will de-rate when the am</li> <li>(5) The XSL3 amplifier has circuitry that will li<br/>Limiting bit under Drive Status monitors the<br/>as "ON".</li> </ul> | DC motor. The second number is for an AC motor that is in motion. The third |  |

(7) The transistor temperature can be up to 25°C higher than the heat sink temperature that is shown in the Status Utility. Set the AverageCurrentFault parameter to ensure that the heat sink power dissipation is not exceeded.

(8) Aerotech recommends that you do not use high-current stepper motors with the XSL3-10-40 linear amplifier because of high-power dissipation. Contact Aerotech for additional information.

### 1.1.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer.

Use an EfficiencyFactor of approximately 90% in the following equations.

| Brushless Motor         |                                                             |
|-------------------------|-------------------------------------------------------------|
| Output Power            |                                                             |
| Rotary Motors           | Power Output [W] = Torque [N·m] * Angular velocity[rad/sec] |
| Linear Motors           | Power Output [W] = Force [N] * Linear velocity[m/sec]       |
| Rotary or Linear Motors | Power Output [W] = Bemf [V] * l(rms) * 3                    |
|                         |                                                             |

Power Loss = 3 \* I(rms)^2 \* R(line-line)/2 Power Input = (Power Output + Power Loss) / EfficiencyFactor

### **DC Brush Motor**

Power Output [W] = Torque [N·m] \* Angular velocity[rad/sec] Power Loss = I(rms)^2 \* R Power Input = (Pout + Ploss) / EfficiencyFactor

### **Linear Motor**

Power Dissipation [W] = MotorCurrentPeak[A] \* TotalBusVoltage[V] \* 3 / 2 Power Input = (Power Dissipation) / EfficiencyFactor

## **1.2. Mechanical Specifications**

## 1.2.1. Mounting and Cooling

Install the drive rack in an IP54 compliant rack mount console to comply with safety standards. Make sure that there is sufficient clearance for free airflow at the rear and along the sides of the chassis and for clearance at the rear panel for cables and connections.

External cooling and Fan Tray cooling options require airflow clearance above and below the drive chassis. Refer to Section 2.14. Cooling Options [-C0/-C1/-C2 Option].

### Table 1-6: Mounting Specifications

|                             |            | iXR3/XR3                                           |  |
|-----------------------------|------------|----------------------------------------------------|--|
| Customer-Supplied Enclosure |            | IP54 Compliant                                     |  |
| Weight                      |            | ~25 kg                                             |  |
| Dimensions                  |            | Refer to Section 1.2.2. Dimensions                 |  |
| Minimum Clearance           | Airflow    | ~25 mm                                             |  |
|                             | Connectors | ~100 mm                                            |  |
| Operating Temperature       |            | Refer to Section 1.3. Environmental Specifications |  |

### WARNING: Heavy Object

- 1. Use a cart to move the product.
- 2. To avoid injury, use two or more people to move and install this product.
- 3. Lift this product only by the base. Do not use the cables or the connectors to lift or move this product.
- 4. Do not use the handles on the front of the product to lift or move this product. Use the handles only to slide the product in and out of its enclosure.



## 1.2.2. Dimensions

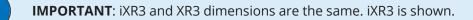
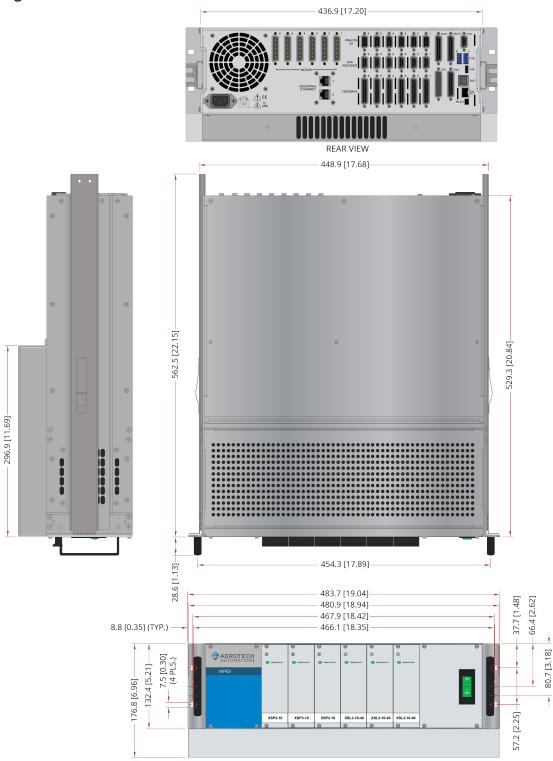
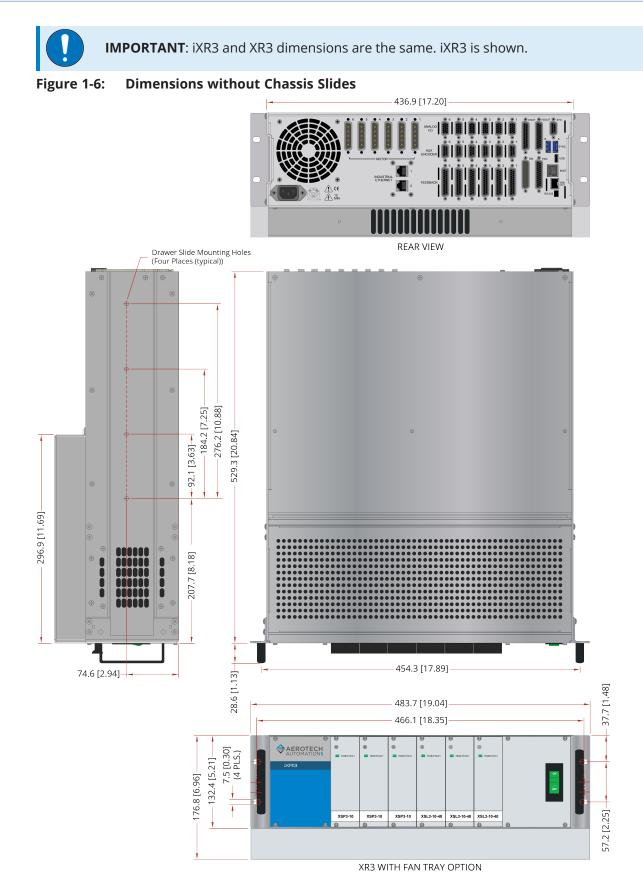





Figure 1-5: Dimensions with Chassis Slides



XR3 WITH FAN TRAY OPTION AND CHASSIS SLIDES



## **1.3. Environmental Specifications**

The environmental specifications are listed below.

| Ambient                                                                                                                                                         | Operating: 0° to 40°C (32° to 104° F)                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature                                                                                                                                                     | Storage: -30° to 85°C (-22° to 185° F)                                                                                                             |  |  |
| Humidity<br>Non-condensingThe maximum relative humidity is 80% for temperatures that<br>less than 31°C and decreases linearly to 50% relative humidity<br>40°C. |                                                                                                                                                    |  |  |
| Operating Altitude                                                                                                                                              | 0 m to 2,000 m (0 ft to 6,562 ft) above sea level.<br>If you must operate this product above 2,000 m or below sea level,<br>contact Aerotech, Inc. |  |  |
| Pollution         Pollution Degree 2           Typically only nonconductive pollution occurs.                                                                   |                                                                                                                                                    |  |  |
| Operation                                                                                                                                                       | Use only indoors                                                                                                                                   |  |  |

### Table 1-7:Environmental Specifications

## 1.4. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

| Drive Type | Software    | First Software Version | Last Software Version |
|------------|-------------|------------------------|-----------------------|
| iXR3       | Automation1 | 2.1.0                  | Current               |
| XR3        | Automation1 | 1.2.0                  | Current               |
| C I N      | A3200       | 6.04                   | Current               |

 Table 1-8:
 Drive and Software Compatibility

This page intentionally left blank.

# **Chapter 2: Installation and Configuration**

The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in Safety Procedures and Warnings.

## **2.1. Electrical Installation**

Motor, power, control and position feedback cable connections are made to the rear of the iXR3/XR3.

A combination power switch/circuit breaker is located on the front of the iXR3/XR3. This breaker is connected to the incoming AC power and provides protection to the iXR3/XR3 system in case of severe overloads. This breaker is selected to meet the maximum current requirements of the iXR3/XR3 system and is normally a 10 A breaker.

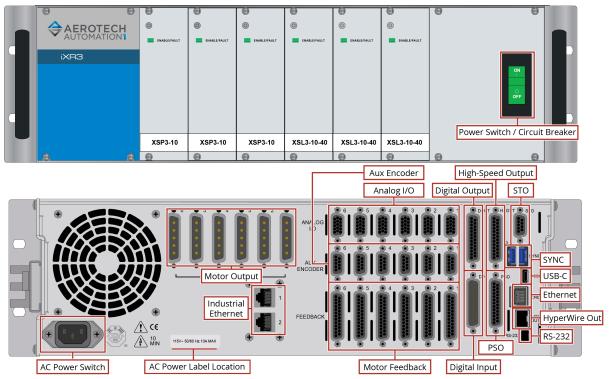
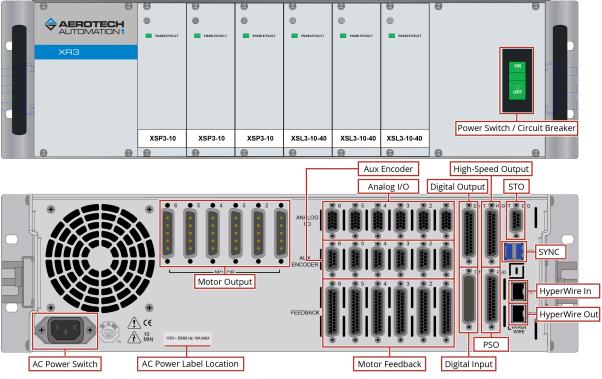




Figure 2-1: iXR3 Connection Overview



### Figure 2-2: XR3 Connection Overview

All low voltage connections must be made using cables and wires sized for the maximum currents that will be carried. Insulation on these cables and wires must be rated at 300 V if this wiring can come into contact with wiring operating above 100 V (AC and motor wiring). Low voltage wiring should not be bundled with AC and motor wiring to minimize signal disturbances due to EMI interference and coupling.

**IMPORTANT**: The machine integrator, OEM or end user is responsible for meeting the final protective grounding requirements of the system.

4

**DANGER**: Disconnect power before you do maintenance to the equipment. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.



**WARNING**: Before powering on the iXR3/XR3, verify that all drive modules and cables to the iXR3/XR3 have been properly installed. Refer to the remaining chapters of this manual for installation and configuration procedures.

Confirm that the AC power is the correct voltage before turning on power to the iXR3/XR3.

## 2.1.1. AC Power Connections

AC input power to the iXR3/XR3 is applied to the AC power receptacle that is located on the rear panel. The power cord connected to this receptacle also provides the protective earth ground connection and can serve as a Mains disconnect. The main power switch located on the front panel of the drive chassis also functions as a 10 A breaker (supplementary protection only) for the incoming AC power.

Most drive racks can be configured for operation at any of four different AC input voltages. To configure the iXR3/XR3, refer to Appendix B: Voltage Selection Operation. Before you attempt to reconfigure the AC input voltage, verify that drive rack does not contain an offline bus supply (for example, 160LT Bus) or other option that would limit or restrict the AC input voltage. These standard AC input voltages along with the current requirements are listed in Table 2-1.



**WARNING**: The AC power cord is the Mains disconnect.

| AC Input Voltage | Input Amps (maximum continuous) |
|------------------|---------------------------------|
| 100 VAC 50/60 Hz | 10 A                            |
| 115 VAC 50/60 Hz | 10 A                            |
| 200 VAC 50/60 Hz | 5 A                             |
| 230 VAC 50/60 Hz | 5 A                             |

The AC power cord wiring must be rated for at least 300 V and have a minimum current capacity of 10 A. The insulation rating for the AC power wiring must be appropriately rated for the environment. The temperature rating of the insulation must be at least 80°C. Environmental conditions may necessitate the need to meet additional AC wiring requirements or specifications. AC wiring should not be bundled with signal wiring to minimize EMI coupling and interference.



**DANGER**: Refer to the user documentation provided with your system to determine if the drive rack is limited to only one AC input voltage. You could damage the iXR3/XR3 if you operate the at other voltages may result in damage to the drive rack.

## 2.1.2. Minimizing Noise for EMC/CE Compliance



**IMPORTANT**: The iXR3/XR3 is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for motor and feedback connectors. Connect the shield to the backshell at each end of the cable.
- 2. Separate motor and power wiring from encoder and I/O wiring.
- 3. Use the lowest motor voltage required by the application to reduce radiated emission.

The following additional changes could be required for EMC compliance and are recommended during initial EMC system evaluation.

1. Add a clamp-on ferrite to the feedback cable close to the drive. [Aerotech PN ECZ02348, Fair-rite PN 0446167281]

## 2.1.3. I/O and Signal Requirements

The I/O, communication, and encoder feedback connections are typically very low power connections. In some applications, especially when there are significant wire distances, a larger wire size may be required to reduce the voltage drop that occurs along the wire. This increase may be necessary in order to keep the voltage within a specified range at a remote point.

Low voltage and high voltage wires should be kept physically separated so that they cannot contact one another. This reduces the risk of electric shock and improves system performance.

| Specification                                  | Value                                                                                                        |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Cable/Wire Rating <sup>(1)</sup>               | 300 V                                                                                                        |
| Minimum Current Capacity                       | .25 A                                                                                                        |
| Temperature Rating (Insulation) <sup>(2)</sup> | 80°C                                                                                                         |
| Cable/Wire Rating <sup>(1)</sup>               | 300 V                                                                                                        |
| Minimum Current Capacity <sup>(3)</sup>        | 1 A                                                                                                          |
| Temperature Rating (Insulation) <sup>(2)</sup> | 80°C                                                                                                         |
|                                                | Minimum Current CapacityTemperature Rating (Insulation) (2)Cable/Wire Rating (1)Minimum Current Capacity (3) |

### Table 2-2: I/O and Signal Specifications

 $1. \ge 30$  V if the wiring is **not** in close proximity to wiring operating at voltages above 60 V.

2. Insulation rating will need to be rated for the higher voltage if the wiring is in proximity to wiring operating at voltages above 60 V.

3. Larger gauge wire may be required to minimize voltage drop due to voltage (IR) loss in the cable.

## 2.1.4. Internal Shunt Option [-SI#]

The internal shunt option is used to limit the internal bus voltage caused by regeneration. Regeneration occurs during deceleration as mechanical energy is converted to electrical energy and stored in the internal power supply capacitors. Regeneration only occurs with PWM amplifier types (XSP3) and not linear amplifier types (XSL3).

The maximum amount of energy that the iXR3/XR3 can safely absorb depends on the line voltage and motor bus configuration as shown in Table 2-3.

| T-1.1. 0.0. | Marine Francis That The WD2 WD2 Care Cafely | Alexander Deuter an Demonstration |
|-------------|---------------------------------------------|-----------------------------------|
| Table 2-3:  | Maximum Energy That The iXR3/XR3 Can Safely | Absorb During Regeneration        |

| Bus Option              | Input Voltage | Internal<br>Capacitance | Energy (J) |
|-------------------------|---------------|-------------------------|------------|
| VB7 - with split bus    | 125 VAC       | 8000 uF / 200 VDC       | 35         |
| VB7 - without split bus | 125 VAC       | 16000 uF / 200 VDC      | 70         |
| VB8 - with split bus    | 240 VAC       | 2300 uF / 400 VDC       | 52         |
| VB8 - without split bus | 240 VAC       | 4600 uf / 400 VDC       | 104        |

To determine if the shunt option is required, use one of the equations that follow to calculate the stored mechanical energy. If the calculated value exceeds the value listed in Table 2-3, the shunt option is required. For multiple axes, add the energy contribution for each axis that shares a power supply and decelerates simultaneously. Compare the sum against the maximum energy limits shown in Table 2-3.

For Linear Axes:

$$E=rac{1}{2}m\cdot v^2$$

m moving mass [kg]

v speed [m/s]

E stored energy [J]

For Rotary Axes:

$$E=rac{1}{2}J\cdot w^2$$

E stored energy [J]

## 2.2. Motor Power Output Connector



**DANGER**: Before you do maintenance to the equipment, disconnect the electrical power. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.

The drive rack can be used to drive the following motor types:

- Brushless (refer to Section 2.2.1.)
- DC Brush (refer to Section 2.2.2.)
- Stepper (refer to Section 2.2.3.)

For a complete list of electrical specifications, refer to Section 1.1.

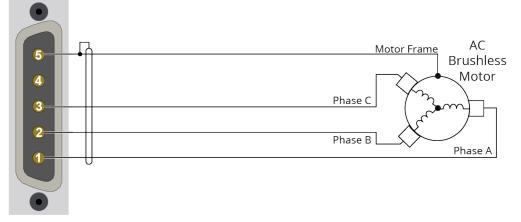


**IMPORTANT**: Refer to local electrical safety requirements to correctly size external system wires.

The 5-pin high power "D" style motor power connectors (Axis 1-6) are located on the rear panel. The pinouts for these connectors are shown in Table 2-4.

### Table 2-4:Motor Power Output Connector Pinout

| Pin | Description                                                   | Recommended<br>Wire Size      | Connector |
|-----|---------------------------------------------------------------|-------------------------------|-----------|
| 5   | Ground                                                        | 1.3 mm² (#16 AWG)             |           |
| 4   | Reserved                                                      | 1.3 mm <sup>2</sup> (#16 AWG) |           |
| 3   | Brushless Phase C Motor Power<br>DC Brush -<br>Stepper Return | 1.3 mm² (#16 AWG)             | 5 4 3     |
| 2   | Brushless Phase B Motor Power<br>Stepper                      | 1.3 mm² (#16 AWG)             | 2         |
| 1   | Brushless Phase A Motor Power<br>DC Brush +<br>Stepper        | 1.3 mm² (#16 AWG)             | •         |


### Table 2-5: Mating Connector Part Numbers for the Motor Power Output Connector

| Description        | Aerotech P/N | Third Party Source P/N |  |
|--------------------|--------------|------------------------|--|
| Male 5 Pin D-Style | ECK01236     | ITT Cannon DBM5W5PK87  |  |
| Contact (QTY. 5)   | ECK00660     | ITT Cannon DM53745-7   |  |
| Backshell          | ECK00656     | Amphenol 17-1726-2     |  |

## 2.2.1. Brushless Motor Connections

The configuration in Figure 2-3 shows a typical brushless motor connection.

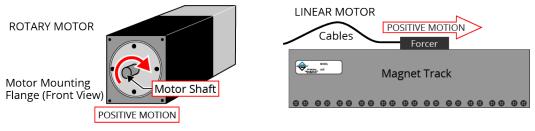
Figure 2-3: Brushless Motor Configuration



Brushless motors are commutated electronically by the controller. The use of Hall effect devices for commutation is recommended.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Hall-effect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller. Refer to Section 2.2.1.1. for powered motor phasing or Section 2.2.1.2. for unpowered motor and feedback phasing.

For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

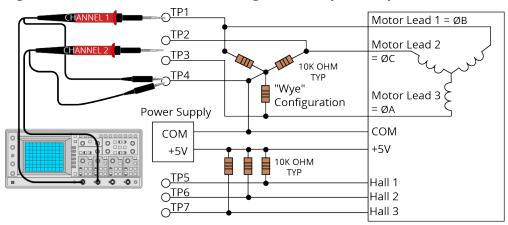

A motor filter module can be installed between the drive and the motor to reduce the effects on PWM generated noise currents.

### 2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing

Observe the state of the encoder and Hall-effect device signals in the Diagnostics section of the Status Utility.

| Table 2-6: Hall Signal Diagr | Hall Signal Diagnostics |  |  |
|------------------------------|-------------------------|--|--|
| Hall-Signal Status           | Definition              |  |  |
|                              | 0 V or logic low        |  |  |
| ON                           | 5 V or logic high       |  |  |

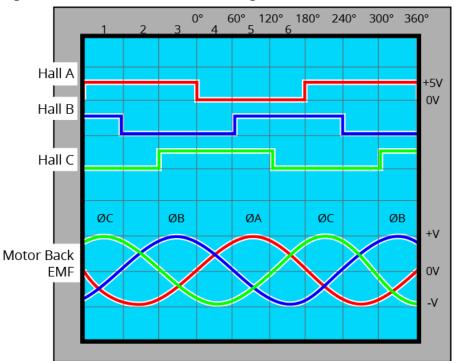
#### Figure 2-4: Positive Motor Direction






| Polling rate: Medium  Diagnostics |                             |                     |                     |                   |  |
|-----------------------------------|-----------------------------|---------------------|---------------------|-------------------|--|
| Axes                              | Item                        | Х                   | Y                   | Z                 |  |
| Axis Status                       | Status                      |                     |                     |                   |  |
| Diagnostics<br>Drive Info         | Position Feedback           | 0000000000000       | 0000000000000       | 00000000000       |  |
| Drive Status                      | Position Calibration All    | 0000000000000       | 0000000000000       | 00000000000       |  |
| Fault                             | Position Master/Slave       | 0000000000000       | 00000000000000      | 00000000000       |  |
| Tasks                             | Position Gantry Offset      | 0000000000000       | 0000000000000       | 0000000000        |  |
| Task Mode                         | Auxiliary Position Feedback | 0000000000000       | 00000000000000      | 00000000000       |  |
| Task Status 0<br>Task Status 1    | Analog Input 0              | 0.0000              | 0.0000              | 0.00              |  |
| Task Status 2                     | Analog Input 1              | 0.0000              | 0.0000              | 0.00              |  |
| Tasks                             | Digital Input 15:0          | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 00 |  |
| Controller<br>Data Collection     | Digital Input 31:16         | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 00 |  |
| Drive Interface                   | Digital Output 15:0         | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 00 |  |
| Drive Nodes                       | Digital Output 31:16        | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 00 |  |
| thernet                           | Average Velocity Feedback   | 0000000000000       | 00000000000000      | 0000000000        |  |
|                                   | Current Feedback            | 0.0000              | 0.0000              | 0.00              |  |
|                                   | Transition Offset Errors    | 0                   | 0                   |                   |  |
|                                   | Hardware                    |                     |                     |                   |  |
|                                   | Enable                      |                     |                     |                   |  |
|                                   | CW                          |                     |                     |                   |  |
|                                   | CCW                         |                     |                     |                   |  |
|                                   | Home                        |                     |                     |                   |  |
|                                   | Marker                      |                     |                     |                   |  |
|                                   | Hall A                      |                     |                     |                   |  |
|                                   | Hall B                      |                     |                     |                   |  |
|                                   | Hall C                      |                     |                     |                   |  |

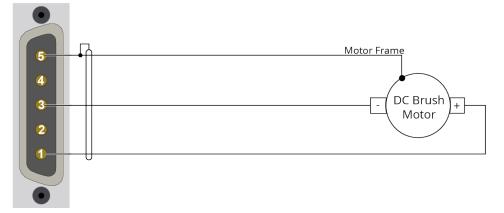
## 2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing


Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-6. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-6). Wave forms are shown while moving the motor in the positive direction.





With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in Figure 2-7. Use the CommutationOffset parameter to correct for Hall signal misalignment.

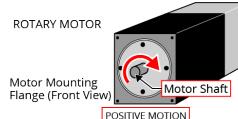

Figure 2-7: Brushless Motor Phasing Goal



## 2.2.2. DC Brush Motor Connections

The configuration shown in Figure 2-8 is an example of a typical DC brush motor connection. Refer to Section 2.2.2.1. for information on motor phasing.

Figure 2-8: DC Brush Motor Configuration




## 2.2.2.1. DC Brush Motor Phasing

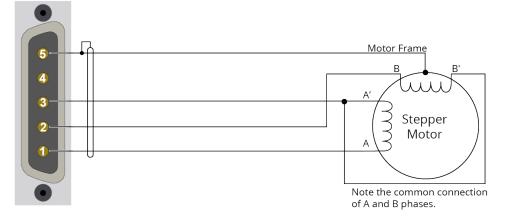
A properly phased motor means that the positive motor lead should be connected to the ØA motor terminal and the negative motor lead should be connected to the ØC motor terminal. To determine if the motor is properly phased, connect a voltmeter to the motor leads of an un-powered motor:

- 1. Connect the positive lead of the voltmeter to the one of the motor terminals.
- 2. Connect the negative lead of the voltmeter to the other motor terminal.
- 3. Move or rotate the motor in the positive or clockwise (CW) direction by hand.

## Figure 2-9: Positive Motor Direction



- 4. If the voltmeter indicates a negative value, swap the motor leads and move the motor by hand in the positive direction, again. When the voltmeter indicates a positive value, the motor leads have been identified.
- 5. Connect the motor lead from the positive lead of the voltmeter to the ØA motor terminal on the controller. Connect the motor lead from the negative lead of the voltmeter to the ØC motor terminal on the controller.


For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

## 2.2.3. Stepper Motor Connections

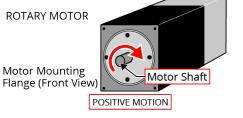
The configuration shown in Figure 2-10 is an example of a typical stepper motor connection. Refer to Section 2.2.3.1. for information on motor phasing.

In this case, the effective motor voltage is half of the applied bus voltage. For example, an 80 V motor bus supply is needed to get 40 V across the motor.

Figure 2-10: Stepper Motor Configuration



## 2.2.3.1. Stepper Motor Phasing


A stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.

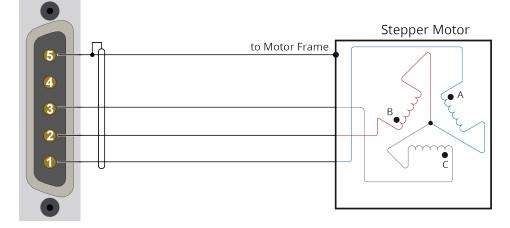
**With an Encoder:** Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-11). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.





For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.


## 2.2.4. Three Phase Stepper Motor Connections



**IMPORTANT**: This feature is only supported in Automation1 software version 2.2.0. or later.

The configuration shown in Figure 2-12 is an example of a typical three phase stepper motor connection. Refer to Section 2.2.4.1. for information on motor phasing.

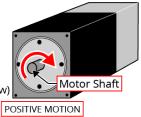
Figure 2-12: Three Phase Stepper Motor Configuration



## 2.2.4.1. Stepper Motor Phasing

A three phase stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.


**With an Encoder:** Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-13). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.



ROTARY MOTOR

Motor Mounting Flange (Front View)



# 2.3. Feedback Connector

The connector pin assignment is shown in Table 2-7 with detailed connection information in the following sections.

| Pin #     | Description                                          | In/Out/Bi     | Connector  |
|-----------|------------------------------------------------------|---------------|------------|
| 1         | Reserved                                             | N/A           |            |
| 2         | Motor Over Temperature Thermistor                    | Input         |            |
| 3         | +5V Power <sup>(1)</sup>                             | Output        |            |
| 4         | Plug and Play Serial Data (for Aerotech stages only) | Bidirectional |            |
| 5         | Hall-Effect Sensor B (brushless motors only)         | Input         |            |
| 6         | Encoder Marker Reference Pulse -                     | Input         |            |
| 0         | Absolute Encoder Clock -                             | Output        | $\bigcirc$ |
| 7         | Encoder Marker Reference Pulse +                     | Input         |            |
| /         | Absolute Encoder Clock +                             | Output        |            |
| 8         | Absolute Encoder Data -                              | Bidirectional | •          |
| 9         | Reserved                                             | N/A           | ••         |
| 10        | Hall-Effect Sensor A (brushless motors only)         | Input         | • •        |
| 11        | Hall-Effect Sensor C (brushless motors only)         | Input         | •          |
| 12        | Clockwise End of Travel Limit                        | Input         | •          |
| 13        | Brake Output -                                       | Output        | •          |
| 14        | Encoder Cosine +                                     | Input         |            |
| 15        | Encoder Cosine -                                     | Input         | ••         |
| 16        | +5V Power <sup>(1)</sup>                             | Output        | ••         |
| 17        | Encoder Sine +                                       | Input         | 13 25      |
| 18        | Encoder Sine -                                       | Input         | 13         |
| 19        | Absolute Encoder Data+                               | Bidirectional | $\bigcirc$ |
| 20        | Signal Common                                        | Output        |            |
| 21        | Signal Common                                        | Output        |            |
| 22        | Home Switch Input                                    | Input         |            |
| 23        | Encoder Fault Input                                  | Input         |            |
| 24        | Counterclockwise End of Travel Limit                 | Input         |            |
| 25        | Brake Output +                                       | Output        |            |
| (1) The r | naximum combined current output is 500 mA.           |               |            |

## Table 2-7: Feedback Connector Pinout

## Table 2-8: Mating Connector Part Numbers for the Feedback Connector

| Mating Connector   | Aerotech P/N | Third Party P/N     |
|--------------------|--------------|---------------------|
| 25-Pin D-Connector | ECK00101     | FCI DB25P064TXLF    |
| Backshell          | ECK00656     | Amphenol 17E-1726-2 |

## 2.3.1. Primary Encoder Inputs

The primary encoder inputs are accessible through the Feedback connector. Use the PrimaryFeedbackType [A3200: PositionFeedbackType or VelocityFeedbackType] parameter to configure the drive rack to accept an encoder signal type.

Square Wave encoder signals: Section 2.3.1.1.

Absolute encoder signals: Section 2.3.1.2.

Sine Wave encoder signals (as permitted by the multiplier option): Section 2.3.1.3.

Refer to Section 2.3.1.4. for encoder feedback phasing.

Refer to Section 2.8. for the auxiliary encoder input on the Aux Encoder connectors.

#### Table 2-9:Multiplier Options

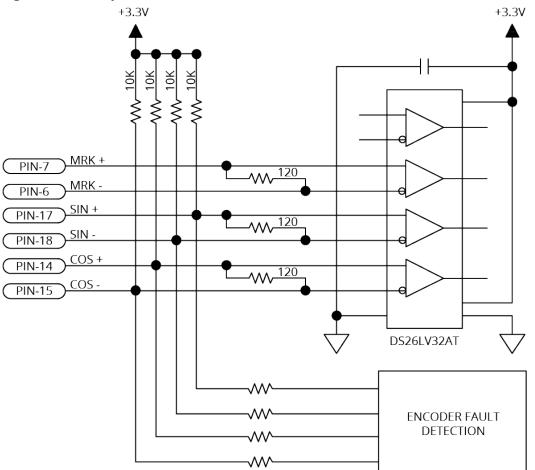
| Option | Primary Encoder Accepts                                                | Auxiliary Encoder Accepts                                          |
|--------|------------------------------------------------------------------------|--------------------------------------------------------------------|
| -CTN   | Square Wave or Absolute encoders                                       | Square Wave or Absolute encoders                                   |
| -CT1   | Sine Wave (standard performance), Square<br>Wave, or Absolute encoders | Square Wave or Absolute encoders                                   |
| -CT2   | Sine Wave (high performance), Square Wave, or Absolute encoders        | Square Wave or Absolute encoders                                   |
| -CT4   | Sine Wave (high performance), Square Wave, or Absolute encoders        | Sine Wave (high performance), Square<br>Wave, or Absolute encoders |



**IMPORTANT**: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

#### Table 2-10: Primary Encoder Input Pins on the Feedback Connector

| Pin #     | Description                                        | In/Out/Bi     |  |  |
|-----------|----------------------------------------------------|---------------|--|--|
| 3         | +5V Power <sup>(1)</sup>                           | Output        |  |  |
| 6         | Encoder Marker Reference Pulse -                   | Input         |  |  |
| 0         | Absolute Encoder Clock -                           | Output        |  |  |
| 7         | Encoder Marker Reference Pulse +                   | Input         |  |  |
| /         | Absolute Encoder Clock +                           | Output        |  |  |
| 8         | Absolute Encoder Data -                            | Bidirectional |  |  |
| 14        | Encoder Cosine +                                   | Input         |  |  |
| 15        | Encoder Cosine -                                   | Input         |  |  |
| 16        | +5V Power <sup>(1)</sup>                           | Output        |  |  |
| 17        | Encoder Sine +                                     | Input         |  |  |
| 18        | Encoder Sine -                                     | Input         |  |  |
| 19        | Absolute Encoder Data+                             | Bidirectional |  |  |
| 20        | Signal Common                                      | Output        |  |  |
| 21        | Signal Common                                      | Output        |  |  |
| (1) The r | (1) The maximum combined current output is 500 mA. |               |  |  |


#### 2.3.1.1. Square Wave Encoder (Primary)

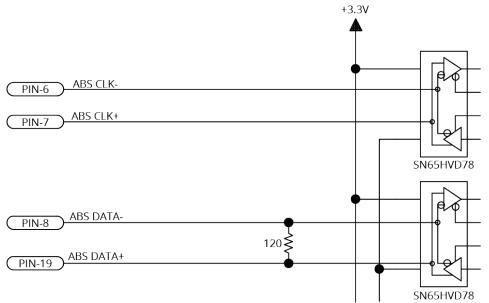
The controller accepts RS-422 square wave encoder signals. The controller will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

 Table 2-11:
 Square Wave Encoder Specifications

| Specification          | Value                                          |
|------------------------|------------------------------------------------|
| Encoder Frequency      | 10 MHz maximum (25 ns minimum edge separation) |
| x4 Quadrature Decoding | 40 million counts/sec                          |






## 2.3.1.2. Absolute Encoder (Primary)

The controller retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot echo an absolute encoder signal.

Refer to Figure 2-15 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

#### Figure 2-15: Absolute Encoder Schematic (Feedback Connector)

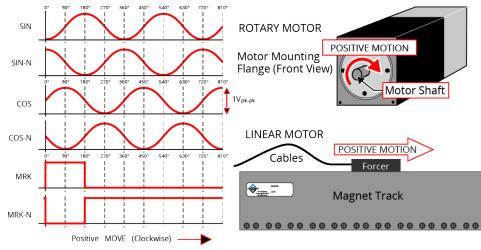


## 2.3.1.3. Sine Wave Encoder (Primary) [-CT1/-CT2/-CT4 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the PrimaryEncoderMultiplicationFactor [A3200: EncoderMultiplicationFactor] parameter. Use Encoder Tuning [A3200: Feedback Tuning] to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.

High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the PrimaryEncoderMultiplierSetup [A3200: EncoderMultiplierSetup] parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.

The iXR3/XR3 with the -CT2 and -CT4 options can generate emulated encoder signals. These signals can be output on the AUX ENCODER connector, the HSOUT (High-Speed Output) connector, or used internally by the PSO. Refer to the EncoderDivider and PrimaryEmulatedQuadratureDivider [A3200: EmulatedQuadratureDivider] parameters and the encoder output functions [A3200: ENCODER OUT command] in the Help file for more information.


You cannot use a sine wave encoder with the -CT1 multiplier option as an input to the PSO. The -CT1 option does not generate emulated quadrature signals.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

| Specification                                              |      | Value                                        |           |
|------------------------------------------------------------|------|----------------------------------------------|-----------|
|                                                            |      | Primary                                      | Auxiliary |
| Input Frequency (max)                                      |      | 450 kH                                       | z, 2 MHz  |
| Input Amplitude <sup>(1)</sup>                             |      | 0.6 to 1.                                    | 75 Vpk-pk |
|                                                            | -CT1 | 16,384                                       | N/A       |
| Interpolation Factor (max)                                 | -CT2 | 65,536                                       | N/A       |
|                                                            | -CT4 | 65,536                                       | 65,536    |
| -CT2/-CT4 Primary Encoder Channel<br>Interpolation Latency |      | 800 nsec (analog input to quadrature output) |           |
| Input Common Mode                                          |      | 1.5 to 1                                     | 3.5 VDC   |
| (1) Measured as SIN(+) - SIN(-) or COS(+) - COS(-)         |      |                                              |           |

#### Table 2-12: Sine Wave Encoder Specifications

#### Figure 2-16: Sine Wave Encoder Phasing Reference Diagram



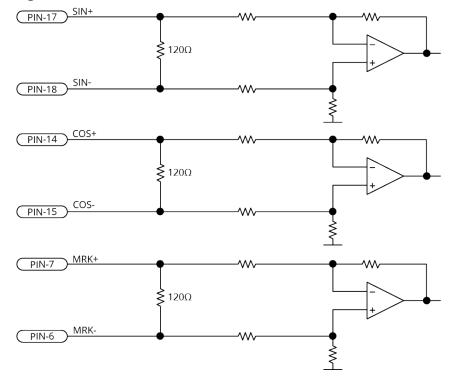



Figure 2-17: Sine Wave Encoder Schematic (Feedback Connector)

## 2.3.1.4. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-18 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-19).

For dual loop systems, the velocity feedback encoder is displayed in the diagnostic display (Figure 2-19).

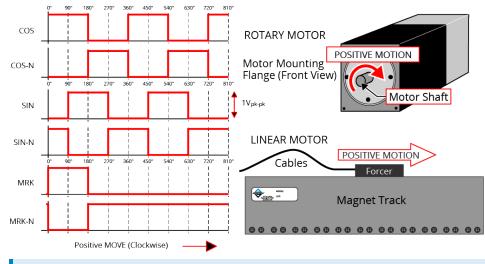



Figure 2-18: Encoder Phasing Reference Diagram (Standard)



**IMPORTANT**: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-18.

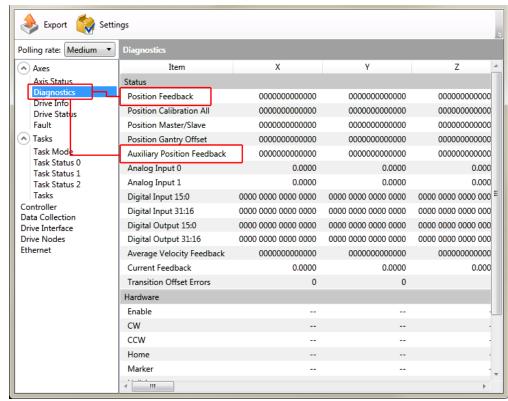
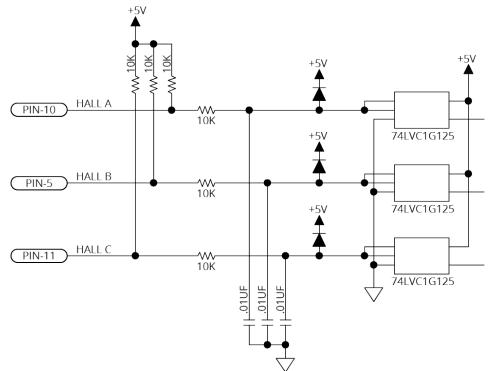



Figure 2-19: Position Feedback in the Diagnostic Display

## 2.3.2. Hall-Effect Inputs


The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

Refer to Section 2.2.1.1. for Hall-effect device phasing.

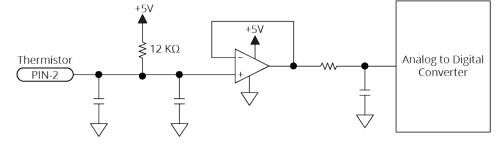
### Table 2-13: Hall-Effect Feedback Pins on the Feedback Connector

| Pin #     | Description                                        | In/Out/Bi |  |  |  |
|-----------|----------------------------------------------------|-----------|--|--|--|
| 3         | +5V Power <sup>(1)</sup>                           | Output    |  |  |  |
| 5         | Hall-Effect Sensor B (brushless motors only)       | Input     |  |  |  |
| 10        | Hall-Effect Sensor A (brushless motors only)       | Input     |  |  |  |
| 11        | Hall-Effect Sensor C (brushless motors only)       | Input     |  |  |  |
| 16        | +5V Power <sup>(1)</sup>                           | Output    |  |  |  |
| 20        | Signal Common                                      | Output    |  |  |  |
| 21        | 21 Signal Common Output                            |           |  |  |  |
| (1) The r | (1) The maximum combined current output is 500 mA. |           |  |  |  |

### Figure 2-20: Hall-Effect Inputs Schematic (Feedback Connector)



## 2.3.3. Thermistor Input


The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low which will result in a low input signal. As the increasing temperature causes the resistance of the thermistor to increase, the sensor will trigger an over temperature fault.

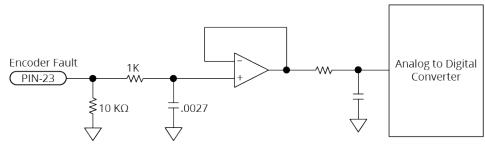
The thermistor is connected between Pin 2 and Signal Common. The nominal trip value of the sensor is 1.385 k $\Omega$ . The circuit includes a 12 k $\Omega$  internal pull-up resistor which corresponds to a trip voltage of +0.52 V.

| Table 2-14. Thermistor input Fill on the recuback connect | Table 2-14: | Thermistor Input Pin on the Feedback Connector |
|-----------------------------------------------------------|-------------|------------------------------------------------|
|-----------------------------------------------------------|-------------|------------------------------------------------|

| Pin # | Description                       | In/Out/Bi |
|-------|-----------------------------------|-----------|
| 2     | Motor Over Temperature Thermistor | Input     |






## 2.3.4. Encoder Fault Input

The encoder fault input is for use with encoders that have a fault output. This is provided by some manufacturers and indicates a loss of encoder function. The active state of this input is parameter configurable and the controller should be configured to disable the axis when the fault level is active. The nominal trip voltage of the encoder fault input is +2.5 V.

### Table 2-15: Encoder Fault Input Pin on the Feedback Connector

| Pin # | Description         | ln/Out/Bi |
|-------|---------------------|-----------|
| 23    | Encoder Fault Input | Input     |

### Figure 2-22: Encoder Fault Input Schematic (Feedback Connector)



## 2.3.5. End of Travel and Home Limit Inputs

End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead. All of the end-of-travel limit inputs accept 0-24 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-25).

|       | Table 2-10. End of Travel and Home Emilt Fins on the recuback connector |           |  |
|-------|-------------------------------------------------------------------------|-----------|--|
| Pin # | Description                                                             | In/Out/Bi |  |
| 12    | Clockwise End of Travel Limit                                           | Input     |  |
| 16    | +5V Power                                                               | Output    |  |
| 20    | Signal Common                                                           | Output    |  |
| 21    | Signal Common                                                           | Output    |  |
| 22    | Home Switch Input                                                       | Input     |  |
| 24    | Counterclockwise End of Travel Limit                                    | Input     |  |

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-23 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration.



**IMPORTANT**: Use NPN-type normally-closed limit switches (Active High) to provide failsafe behavior in the event of an open circuit.

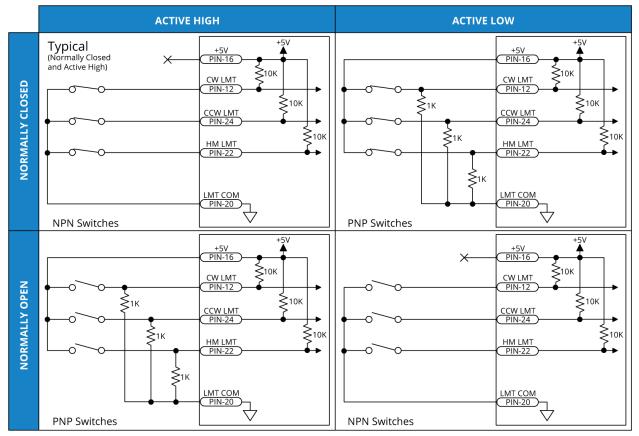
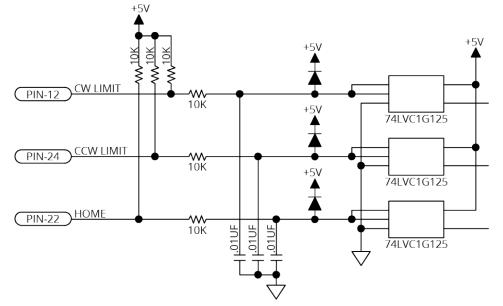




Figure 2-23: End of Travel and Home Limit Input Connections





#### 2.3.5.1. End of Travel and Home Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-25).

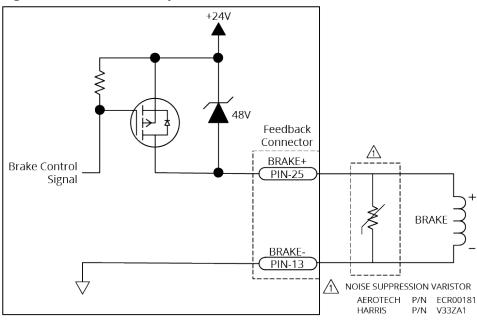
| Figure 2-25: | End of Travel and Home Limit Input Diagnostic Display |
|--------------|-------------------------------------------------------|
|--------------|-------------------------------------------------------|

| Export 😵 Settings          |                             |                     |                     |                    |
|----------------------------|-----------------------------|---------------------|---------------------|--------------------|
| Polling rate: Medium 🔻     | Diagnostics                 |                     |                     |                    |
| Axes                       | Item                        | X                   | Y                   | Z*                 |
| Axis Status<br>Diagnostics | Auxiliary Position Feedback | 000000000000        | 0000000000000       | 00000000000        |
| Drive Info                 | Analog Input 0              | 0.0000              | 0.0000              | 0.000              |
| Drive Status               | Analog Input 1              | 0.0000              | 0.0000              | 0.000              |
| Fault                      | Digital Input 15:0          | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 000 |
| Tasks                      | Digital Input 31:16         | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 000 |
| Task Mode<br>Task Status 0 | Digital Output 15:0         | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 000 |
| Task Status 1              | Digital Output 31:16        | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 000 |
| Task Status 2              | Average Velocity Feedback   | 0000000000000       | 00000000000000      | 00000000000        |
| Tasks<br>Controller        | Current Feedback            | 0.0000              | 0.0000              | 0.000              |
| Data Collection            | Transition Offset Errors    | 0                   | 0                   |                    |
| Drive Interface            | Hardware                    |                     |                     |                    |
| Drive Nodes<br>Ethernet    | Enable                      |                     |                     | · =                |
| culemet                    | CW                          |                     |                     |                    |
|                            | CCW                         |                     |                     |                    |
|                            | Home                        |                     |                     |                    |
|                            | Marker                      |                     |                     |                    |
|                            | Hall A                      |                     |                     |                    |
|                            | Hall B                      |                     |                     |                    |
|                            | Hall C                      |                     |                     |                    |
|                            | ESTOP                       |                     |                     |                    |
|                            | Brake                       |                     |                     |                    |
|                            | <                           |                     |                     | Þ                  |

## 2.3.6. Brake Output

Each axis has a dedicated brake output circuit. An internal 24 V power supply is used to energize the brake. The brake output is driven by +24 V to release the brake.

Configure the brake with the BrakeSetup [A3200: EnableBrakeControl] parameter for automatic control (typical). You can also use software commands to directly control the brake output. Refer to the Help file for more information.


#### Table 2-17:Brake Output Pins on the Feedback Connector

| Pin # | Description    | In/Out/Bi |
|-------|----------------|-----------|
| 13    | Brake Output - | Output    |
| 25    | Brake Output + | Output    |

#### Table 2-18:Brake Output Specifications

| Specification                              | Value |
|--------------------------------------------|-------|
| Output Voltage                             | 24 V  |
| Output Current                             | .5 A  |
| Total Brake Current with all Axes Combined | 3 A   |

#### Figure 2-26: Brake Output Connections (Feedback Connector)





**IMPORTANT**: The brake itself will normally cause a small change in axis position when activated.

# 2.4. Position Synchronized Output Connector (PSO)

The PSO output signal is available in two signal formats:

- Isolated Signals (Section 2.4.1.)
- TTL Signals (Section 2.4.2.)

#### Table 2-19: PSO Connector Pinout

| Pin # | Description                                          | In/Out/Bi | Connector  |
|-------|------------------------------------------------------|-----------|------------|
| 1     | Data Acquisition +                                   | Input     |            |
| 2     | External PSO Sync 1 + [A3200: External PSO Sync 0 +] | Input     |            |
| 3     | External PSO Sync 1 - [A3200: External PSO Sync 0 -] | Input     |            |
| 4     | External PSO Sync 2 + [A3200: External PSO Sync 1 +] | Input     |            |
| 5     | External PSO Sync 2 - [A3200: External PSO Sync 1 -] | Input     |            |
| 6     | External PSO Sync 3 + [A3200: External PSO Sync 2 +] | Input     |            |
| 7     | External PSO Sync 3 - [A3200: External PSO Sync 2 -] | Input     |            |
| 8     | PSO Output 3 (5 V TTL) [A3200: PSO Output 2]         | Output    | <b>1</b> 4 |
| 9     | Ground                                               | N/A       |            |
| 10    | PSO Output 2 (5 V TTL) [A3200: PSO Output 1]         | Output    |            |
| 11    | Ground                                               | N/A       | •          |
| 12    | Ground                                               | N/A       |            |
| 13    | PSO Output 1 (5 V TTL) [A3200: PSO Output 0]         | Output    | •          |
| 14    | Data Acquisition -                                   | Input     | •          |
| 15    | PSO Output 3 - (Isolated) [A3200: PSO Output 2 -]    | Output    | • •        |
| 16    | PSO Output 3 + (Isolated) [A3200: PSO Output 2 +]    | Output    | • •        |
| 17    | PSO Output 2 - (Isolated) [A3200: PSO Output 1 -]    | Output    | ••         |
| 18    | PSO Output 2 + (Isolated) [A3200: PSO Output 1 +]    | Output    | • 25       |
| 19    | PSO Output 1 - (Isolated) [A3200: PSO Output 0 -]    | Output    | 13 25      |
| 20    | PSO Output 1 + (Isolated) [A3200: PSO Output 0 +]    | Output    | $\frown$   |
| 21    | +5 V (500 mA max)                                    | Output    |            |
| 22    | +5 V (500 mA max)                                    | Output    |            |
| 23    | Кеу                                                  | N/A       |            |
| 24    | Ground                                               | N/A       |            |
| 25    | Ground                                               | N/A       | ]          |

#### Table 2-20: PSO Specifications

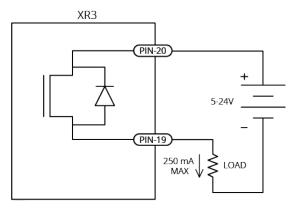
| Specification                                                       |          | Value    |
|---------------------------------------------------------------------|----------|----------|
| Maximum PSO Output (Fire) Frequency                                 | TTL      | 12.5 MHz |
| Maximum PSO Output (Fire) Frequency                                 | Isolated | 5 MHz    |
| Output Latency                                                      | TTL      | 50 ns    |
| [Fire event to output change]                                       | Isolated | 150 ns   |
| 1. Signals in excess of this rate will cause a loss of PSO accuracy |          |          |

## 2.4.1. PSO Isolated Outputs

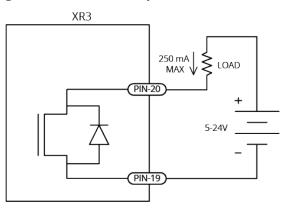
This output signal is a fully-isolated 5-24V compatible output capable of sourcing or sinking current. Refer to Figure 2-27 and Figure 2-28.

This output is normally open and only conducts current when a PSO fire event occurs.

The PSO Isolated Outputs are overload protected and will turn off if the maximum output current is exceeded.


#### Table 2-21: PSO Isolated Output Specification

| Specification | Value          |  |
|---------------|----------------|--|
| Outputs (±)   | 5-24 V, 250 mA |  |


#### Table 2-22: Isolated Output Pins on the PSO Connector

| Pin # | Description                                       | In/Out/Bi |
|-------|---------------------------------------------------|-----------|
| 15    | PSO Output 3 - (Isolated) [A3200: PSO Output 2 -] | Output    |
| 16    | PSO Output 3 + (Isolated) [A3200: PSO Output 2 +] | Output    |
| 17    | PSO Output 2 - (Isolated) [A3200: PSO Output 1 -] | Output    |
| 18    | PSO Output 2 + (Isolated) [A3200: PSO Output 1 +] | Output    |
| 19    | PSO Output 1 - (Isolated) [A3200: PSO Output 0 -] | Output    |
| 20    | PSO Output 1 + (Isolated) [A3200: PSO Output 0 +] | Output    |

#### Figure 2-27: PSO Output Sources Current



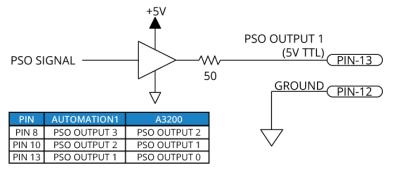




## 2.4.2. PSO TTL Outputs

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input.

The TTL PSO outputs are active high and designed to drive a 50  $\Omega$  minimum load.


| Table 2-23: | PSO TTL | Outputs S | Specification |
|-------------|---------|-----------|---------------|
|             | 130 115 | outputs s | pecification  |

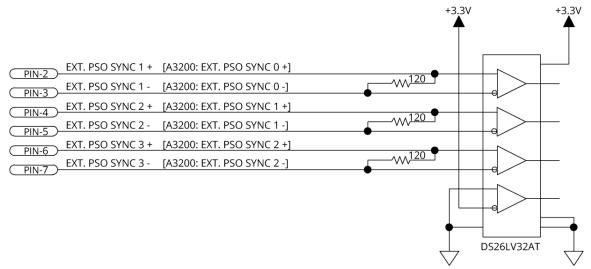
| Specification | Value      |  |
|---------------|------------|--|
| Outputs (TTL) | 5 V, 50 mA |  |

### Table 2-24: TTL Output Pins on the PSO Connector

| Pin # | Description                                  | In/Out/Bi |
|-------|----------------------------------------------|-----------|
| 8     | PSO Output 3 (5 V TTL) [A3200: PSO Output 2] | Output    |
| 9     | Ground                                       | N/A       |
| 10    | PSO Output 2 (5 V TTL) [A3200: PSO Output 1] | Output    |
| 11    | Ground                                       | N/A       |
| 12    | Ground                                       | N/A       |
| 13    | PSO Output 1 (5 V TTL) [A3200: PSO Output 0] | Output    |

## Figure 2-29: PSO TTL Outputs Schematic




## 2.4.3. External PSO Synchronization

You can use the external PSO synchronization functions [A3200: PSOOUTPUT PULSE EXTSYNC command] to synchronize waveform generation with an external synchronization signal. When you activate this feature, the PSO Waveform module will not generate the configured waveform when an output event is received until the rising edge of the synchronization signal occurs.

## Table 2-25:External PSO Sync Input Pins on the PSO Connector

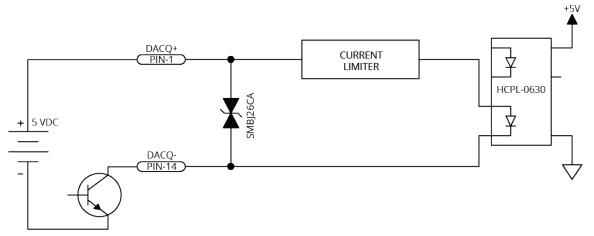
| Pin # | Description                                          | In/Out/Bi |
|-------|------------------------------------------------------|-----------|
| 2     | External PSO Sync 1 + [A3200: External PSO Sync 0 +] | Input     |
| 3     | External PSO Sync 1 - [A3200: External PSO Sync 0 -] | Input     |
| 4     | External PSO Sync 2 + [A3200: External PSO Sync 1 +] | Input     |
| 5     | External PSO Sync 2 - [A3200: External PSO Sync 1 -] | Input     |
| 6     | External PSO Sync 3 + [A3200: External PSO Sync 2 +] | Input     |
| 7     | External PSO Sync 3 - [A3200: External PSO Sync 2 -] | Input     |

### Figure 2-30: PSO Clock Inputs Schematic



## 2.4.4. Data Acquisition Inputs

The Data Acquisition  $\pm$  input is used for the hardware Data Acquisition feature. The delay time through the high-speed opto devices is 50 nsec (typical). The high-speed input is scaled for 5-24 VDC input and can be used with sourcing or sinking drivers.


### Table 2-26:Data Acquisition Input Pins on the PSO Connector

| Pin # | Description        | In/Out/Bi |
|-------|--------------------|-----------|
| 1     | Data Acquisition + | Input     |
| 14    | Data Acquisition - | Input     |

### Table 2-27: Data Acquisition Opto-Isolator Input Specifications

| Specification (HCPL-0630) | Value  |
|---------------------------|--------|
| Input Voltage             | 5-24 V |
| Input Current             | 10 mA  |

### Figure 2-31: Data Acquisition Input Schematic



# 2.5. HSOUT Connector (High-Speed Outputs)

The HSOUT port is a 25 pin 'D' style connector located at the rear of the iXR3/XR3 chassis. Each axis controls two high-speed RS-422 differential outputs which are software-configurable, as explained below.

| Table 2-28: High-Speed Output Specifica | tions |
|-----------------------------------------|-------|
|-----------------------------------------|-------|

| Digital Output Specifications                        | Value                  |
|------------------------------------------------------|------------------------|
| Maximum Output Rate                                  | 32 MHz                 |
| Maximum Encoder Multiplier Output Rate (x4 decoding) | 25 MHz counts / second |
| Maximum Encoder Echo Output Rate (x4 decoding)       | 50 MHz counts / second |

### Table 2-29: HSOUT Connector Pinout

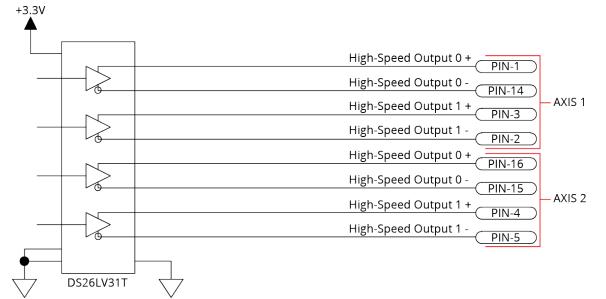
| Pin # | Description                  | ln/Out/Bi | Connector |
|-------|------------------------------|-----------|-----------|
| 3     | Axis 1 High-Speed Output 0 + | Output    |           |
| 2     | Axis 1 High-Speed Output 0 - | Output    |           |
| 1     | Axis 1 High-Speed Output 1 + | Output    |           |
| 14    | Axis 1 High-Speed Output 1 - | Output    |           |
| 16    | Axis 2 High-Speed Output 0 + | Output    |           |
| 15    | Axis 2 High-Speed Output 0 - | Output    |           |
| 4     | Axis 2 High-Speed Output 1 + | Output    | $1 \\ 14$ |
| 5     | Axis 2 High-Speed Output 1 - | Output    |           |
| 7     | Axis 3 High-Speed Output 0 + | Output    | •••       |
| 6     | Axis 3 High-Speed Output 0 - | Output    | •         |
| 18    | Axis 3 High-Speed Output 1 + | Output    | • •       |
| 17    | Axis 3 High-Speed Output 1 - | Output    | •         |
| 20    | Axis 4 High-Speed Output 0 + | Output    |           |
| 19    | Axis 4 High-Speed Output 0 - | Output    | •         |
| 8     | Axis 4 High-Speed Output 1 + | Output    | •         |
| 9     | Axis 4 High-Speed Output 1 - | Output    | •         |
| 11    | Axis 5 High-Speed Output 0 + | Output    | •         |
| 10    | Axis 5 High-Speed Output 0 - | Output    |           |
| 23    | Axis 5 High-Speed Output 1 + | Output    | 13 25     |
| 22    | Axis 5 High-Speed Output 1 - | Output    |           |
| 25    | Axis 6 High-Speed Output 0 + | Output    |           |
| 24    | Axis 6 High-Speed Output 0 - | Output    |           |
| 12    | Axis 6 High-Speed Output 1 + | Output    |           |
| 13    | Axis 6 High-Speed Output 1 - | Output    |           |
| 21    | Кеу                          | N/A       |           |

| Table 2-30: | Mating Connector Part Numbers for the HSOUT Connector |
|-------------|-------------------------------------------------------|
|-------------|-------------------------------------------------------|

| Mating Connector   | Aerotech P/N | Third Party P/N     |
|--------------------|--------------|---------------------|
| 25-Pin D-Connector | ECK00101     | FCI DB25P064TXLF    |
| Backshell          | ECK00656     | Amphenol 17E-1726-2 |

### Encoder Quadrature Output (compatible with -CT2 and -CT4 options)

The high-speed outputs can be used to transmit encoder quadrature signals. In this configuration, high-speed output 0 transmits the sine encoder signal and high-speed output 1 transmits the cosine encoder signal. For more information on transmitting encoder signals out of the iXR3/XR3, refer to the encoder output functions [A3200: ENCODER OUT command] or pulse functions [A3200: PULSE command] command in the Help file.


### **Clock and Direction Output**

The high-speed outputs can be used to transmit clock and direction signals for driving an external device. In this configuration, High-Speed Output 0 transmits the direction signal and High-Speed Output 1 transmits the clock signal. For more information on transmitting clock and direction signals out of the iXR3/XR3, refer to the pulse functions [A3200: PULSE command] command in the Help file.



**IMPORTANT**: The High-Speed Output signal format is not directly compatible with clock and direction inputs found on most stepper motor drives. Use an external RS-422 line receiver to provide the signal level translation.

Figure 2-32: Diagram Showing Axis 1 and Axis 2 High-Speed Outputs



# 2.6. DOUT Connector (Digital Outputs)

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a port in the same configuration. Refer to Figure 2-34 and Figure 2-35.

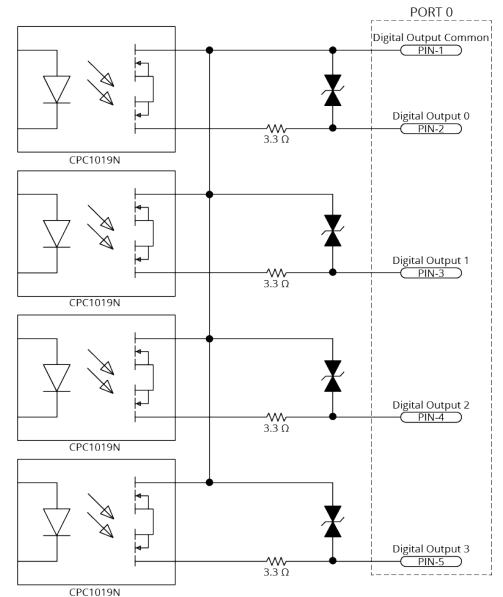
You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-34. To see an example of a current sinking output that has diode suppression, refer to Figure 2-35.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.



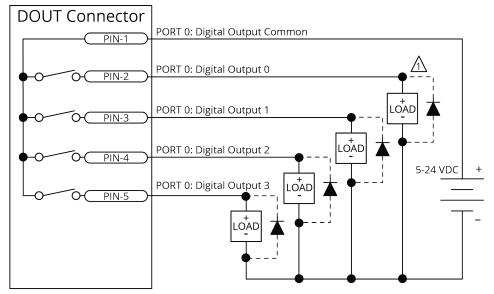
**IMPORTANT**: The digital outputs have overload protection. They will resume normal operation when the overload is removed.

#### Table 2-31:Digital Output Specifications


| Digital Output Specifications | Value                             |
|-------------------------------|-----------------------------------|
| Maximum Voltage               | 24 V (26 V Maximum)               |
| Maximum Sink/Source Current   | 250 mA/output                     |
| Output Saturation Voltage     | 0.9 V at maximum current          |
| Output Resistance             | 3.7 Ω                             |
| Rise / Fall Time              | 250 μs (2K pull up to 24V)        |
| Reset State                   | Output Off (High Impedance State) |

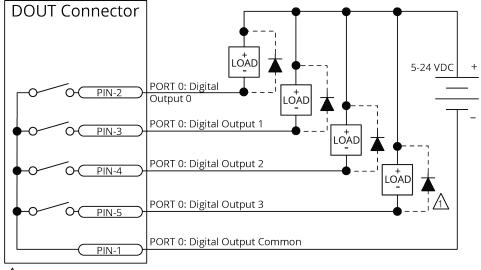
| Pin # | Description                  | ln/Out/Bi     | Connector        |
|-------|------------------------------|---------------|------------------|
| 1     | Port 0 Digital Output Common | Output        | connector        |
| 2     | Port 0 Digital Output 0      | Output        |                  |
| 3     | Port 0 Digital Output 1      | Output        |                  |
| 4     | Port 0 Digital Output 2      | Output        |                  |
| 5     | Port 0 Digital Output 3      | Output        |                  |
| 6     | Port 1 Digital Output Common | Output        |                  |
| 7     | Port 1 Digital Output 4      | Output        |                  |
| 8     | Port 1 Digital Output 5      | Output        | 1 14             |
| 9     | Port 1 Digital Output 6      | Output        | • •              |
| 10    | Port 1 Digital Output 7      | Output        | •                |
| 10    | +5 V                         | Output        |                  |
| 12    | +5 V                         |               | •                |
| 12    | -                            | Output<br>N/A |                  |
| _     | Ground                       |               | •                |
| 14    | Port 2 Digital Output Common | Output        | ••               |
| 15    | Port 2 Digital Output 8      | Output        | • •              |
| 16    | Port 2 Digital Output 9      | Output        | •                |
| 17    | Port 2 Digital Output 10     | Output        | •                |
| 18    | Port 2 Digital Output 11     | Output        | 13 <sup>25</sup> |
| 19    | Port 3 Digital Output Common | Output        | 13               |
| 20    | Port 3 Digital Output 12     | Output        | $\bigcirc$       |
| 21    | Port 3 Digital Output 13     | Output        |                  |
| 22    | Port 3 Digital Output 14     | Output        |                  |
| 23    | Port 3 Digital Output 15     | Output        |                  |
| 24    | Ground                       | N/A           |                  |
| 25    | Кеу                          | N/A           |                  |

| Table 2-32: | DOUT | Connector | Digital | <b>Outputs Pinout</b> |
|-------------|------|-----------|---------|-----------------------|
|             |      |           |         | ••••••••              |


| Table 2-33: | Mating Connector Part Numbers for the DOUT Connector |
|-------------|------------------------------------------------------|
|-------------|------------------------------------------------------|

| Mating Connector   | Aerotech P/N | Third Party P/N     |
|--------------------|--------------|---------------------|
| 25-Pin D-Connector | ECK00101     | FCI DB25P064TXLF    |
| Backshell          | ECK00656     | Amphenol 17E-1726-2 |




## Figure 2-33: Digital Output Schematic

#### Figure 2-34: Digital Outputs Connected in Current Sourcing Mode



 $\Lambda$  Diode required on each output that drives an inductive device (coil), such as a relay.





Diode required on each output that drives an inductive device (coil), such as a relay.

# 2.7. DIN Connector (Digital Inputs)

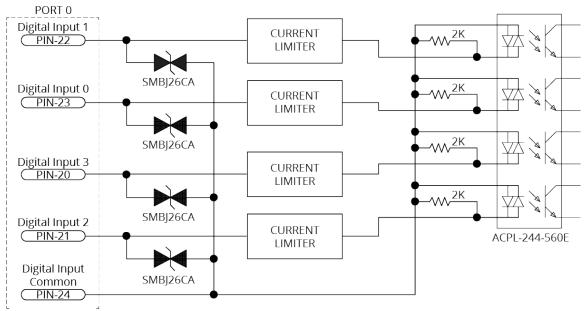
Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 2-37.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 2-38.

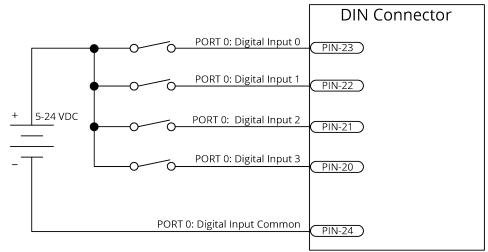
The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

| Pin # | Description                 | In/Out/Bi | Connector                        |
|-------|-----------------------------|-----------|----------------------------------|
| 1     | Ground                      | N/A       |                                  |
| 2     | +5 V                        | Output    |                                  |
| 3     | +5 V                        | Output    |                                  |
| 4     | Port 3 Digital Input 15     | Input     |                                  |
| 5     | Port 3 Digital Input 14     | Input     |                                  |
| 6     | Port 3 Digital Input 13     | Input     |                                  |
| 7     | Port 3 Digital Input 12     | Input     | 13 25                            |
| 8     | Port 3 Digital Input Common | Output    |                                  |
| 9     | Port 2 Digital Input 11     | Input     |                                  |
| 10    | Port 2 Digital Input 10     | Input     |                                  |
| 11    | Port 2 Digital Input 9      | Input     | <b>o</b>                         |
| 12    | Port 2 Digital Input 8      | Input     | <ul> <li>○</li> <li>○</li> </ul> |
| 13    | Port 2 Digital Input Common | Output    | ©                                |
| 14    | Ground                      | N/A       |                                  |
| 15    | Port 1 Digital Input 7      | Input     |                                  |
| 16    | Port 1 Digital Input 6      | Input     |                                  |
| 17    | Port 1 Digital Input 5      | Input     | <b>o</b>                         |
| 18    | Port 1 Digital Input 4      | Input     | ©<br>0                           |
| 19    | Port 1 Digital Input Common | Output    | <sup>9</sup> 14                  |
| 20    | Port 0 Digital Input 3      | Input     |                                  |
| 21    | Port 0 Digital Input 2      | Input     |                                  |
| 22    | Port 0 Digital Input 1      | Input     |                                  |
| 23    | Port 0 Digital Input 0      | Input     |                                  |
| 24    | Port 0 Digital Input Common | Output    |                                  |
| 25    | Кеу                         | N/A       |                                  |

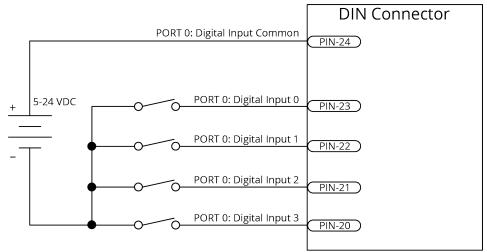

Table 2-34: DIN Connector Digital Inputs Pinout

### Table 2-35: Mating Connector Part Numbers for the DIN Connector

| Mating Connector      | Aerotech P/N | Third Party P/N     |
|-----------------------|--------------|---------------------|
| 25-Socket D-Connector | ECK00300     | Cinch DB-25S        |
| Backshell             | ECK00656     | Amphenol 17E-1726-2 |


### Table 2-36:Digital Input Specifications

| Input Voltage | Approximate Input Current | Turn On Time | Turn Off Time |
|---------------|---------------------------|--------------|---------------|
| +5 V to +24 V | 6 mA                      | 10 µs        | 43 µs         |




## Figure 2-36: Digital Input Schematic

Figure 2-37: Digital Inputs Connected to Current Sourcing (PNP) Devices







# 2.8. Aux Encoder Connectors

The Auxiliary Encoder connector gives you a second encoder input channel. This channel is typically used for dual loop applications.

Use the AuxiliaryFeedbackType [A3200: PositionFeedbackType or VelocityFeedbackType] parameter to configure the drive rack to accept an encoder signal type.

Square Wave encoder signals: Section 2.8.1.

Absolute encoder signals: Section 2.8.2.

Sine Wave encoder signals (with the -CT4 option): Section 2.8.3.

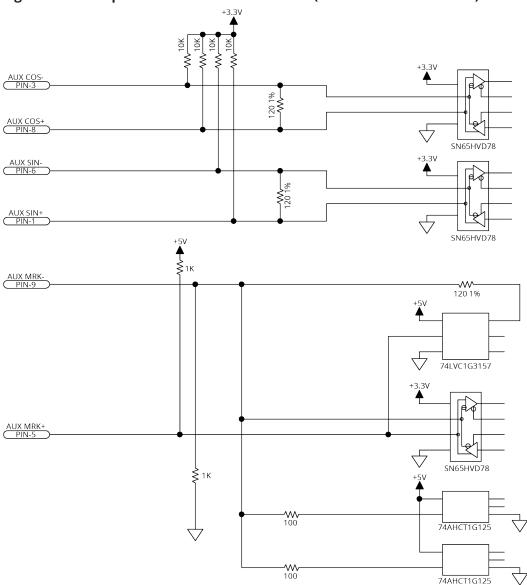
High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the AuxiliaryEncoderMultiplierSetup parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.

You can configure the Auxiliary Encoder interface as an output that will transmit encoder signals for external use. Use the DriveEncoderOutputConfigureInput() function [A3200: EncoderDivider parameter] to configure the Sine ± and Cosine ± connector pins as RS-422 outputs. You can only echo incremental square wave primary encoder inputs or, with the -CT2 or -CT4 option, incremental sine wave inputs. You cannot use the absolute encoder interface when you echo incremental signals.

| Pin # | Description                   | ln/Out/Bi     | Connector |
|-------|-------------------------------|---------------|-----------|
| 1     | Auxiliary Sine +              | Bidirectional |           |
| I     | Absolute Encoder Data +       | Bidirectional |           |
| 2     | Ground                        | N/A           |           |
| 3     | Auxiliary Cosine -            | Bidirectional |           |
| 3     | Absolute Encoder Clock -      | Output        | 1 6       |
| 4     | +5 VA Auxiliary Encoder Power | Output        | •         |
| 5     | Auxiliary Marker +            | Input         | •         |
| 6     | Auxiliary Sine -              | Bidirectional | •         |
| 0     | Absolute Encoder Data -       | Bidirectional | 5 9       |
| 7     | Ground                        | N/A           | 5         |
| 0     | Auxiliary Cosine +            | Bidirectional |           |
| 8     | Absolute Encoder Clock +      | Output        |           |
| 9     | Auxiliary Marker -            | Input         |           |

### Table 2-37: Aux Encoder Connector Pinout

#### Table 2-38: Mating Connector Part Numbers for the Aux Encoder Connectors


| Mating Connector  | Aerotech P/N | Third Party P/N     |
|-------------------|--------------|---------------------|
| 9-Pin D-Connector | ECK00137     | Cinch DE-9P         |
| Backshell         | ECK01021     | Amphenol 17E-1724-2 |

## 2.8.1. Square Wave Encoder (Auxiliary)

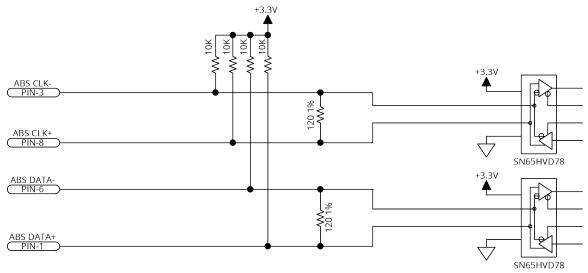
The controller accepts RS-422 square wave encoder signals. The controller will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

| Table 2-39: | Square Wave | Encoder | Specifications |
|-------------|-------------|---------|----------------|
|-------------|-------------|---------|----------------|

| Specification          | Value                                          |
|------------------------|------------------------------------------------|
| Encoder Frequency      | 10 MHz maximum (25 ns minimum edge separation) |
| x4 Quadrature Decoding | 40 million counts/sec                          |



#### Figure 2-39: Square Wave Encoder Interface (Aux Encoder Connector)


## 2.8.2. Absolute Encoder (Auxiliary)

The controller retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot use an absolute encoder with incremental signals on the Aux Encoder Connector.

Refer to Figure 2-40 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

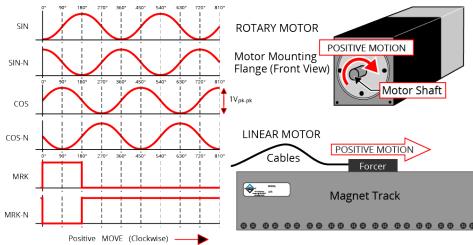
Figure 2-40: Absolute Encoder Schematic (Aux Encoder Connector)

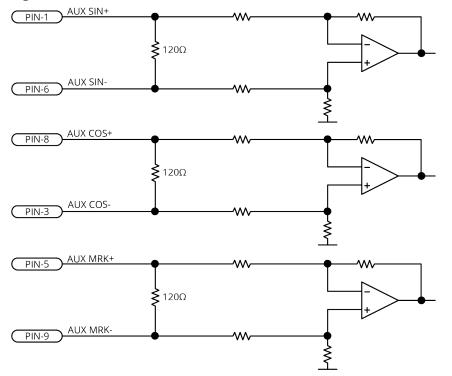


## 2.8.3. Sine Wave Encoder (Auxiliary) [-CT4 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the AuxiliaryEncoderMultiplicationFactor parameter. Use Encoder Tuning [A3200: Feedback Tuning] to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.

High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the AuxiliaryEncoderMultiplierSetup parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.


You can use a sine wave encoder with the -CT4 multiplier option as an input to the PSO. The -CT4 option generates emulated quadrature signals.


For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

| Specification                                              |                | Value                                        |           |
|------------------------------------------------------------|----------------|----------------------------------------------|-----------|
| specification                                              |                | Primary                                      | Auxiliary |
| Input Frequency (max)                                      |                | 450 kHz, 2 MHz                               |           |
| Input Amplitude <sup>(1)</sup>                             |                | 0.6 to 1.75 Vpk-pk                           |           |
|                                                            | -CT1           | 16,384                                       | N/A       |
| Interpolation Factor (max)                                 | -CT2           | 65,536                                       | N/A       |
|                                                            | -CT4           | 65,536                                       | 65,536    |
| -CT2/-CT4 Primary Encoder Channel<br>Interpolation Latency |                | 800 nsec (analog input to quadrature output) |           |
| Input Common Mode                                          |                | 1.5 to 3                                     | 3.5 VDC   |
| (1) Measured as SIN(+) - SIN(-) or CC                      | )S(+) - COS(-) |                                              |           |

#### Table 2-40: Sine Wave Encoder Specifications

#### Figure 2-41: Sine Wave Encoder Phasing Reference Diagram





## Figure 2-42: Sine Wave Encoder Schematic (Aux Encoder Connector)

## 2.9. Analog I/O Connectors

There is a 15-pin D-style Analog I/O connector for each axis accessible at the rear of the iXR3/XR3 chassis. The Analog I/O interface provides the user with two differential 16-bit analog inputs and two single-ended 16-bit analog outputs.



**IMPORTANT**: Analog inputs 0 and 1 are required for Joystick operation. They will not be otherwise accessible if a joystick option is present (see Section 2.9.3.).

## Table 2-41: Analog I/O Connector Pinout

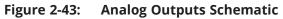
| Pin # | Description        | In/Out/Bi | Connector   |
|-------|--------------------|-----------|-------------|
| 1     | Analog Input 0+    | Input     |             |
| 2     | Analog Input 0-    | Input     |             |
| 3     | Ground             | N/A       |             |
| 4     | Analog Output 0    | Output    |             |
| 5     | Ground             | N/A       |             |
| 6     | Analog Input 1 +   | Input     | $1 \cdot 1$ |
| 7     | Analog Input 1 -   | Input     |             |
| 8     | Ground             | N/A       |             |
| 9     | Analog Output 1    | Output    | • • •       |
| 10    | Ground             | N/A       | • 10 •      |
| 11    | +5 VA              | Output    |             |
| 12    | Ground             | N/A       | $\bigcirc$  |
| 13    | Joystick Button A  | Input     |             |
| 14    | Joystick Button B  | Input     |             |
| 15    | Joystick Interlock | Input     |             |

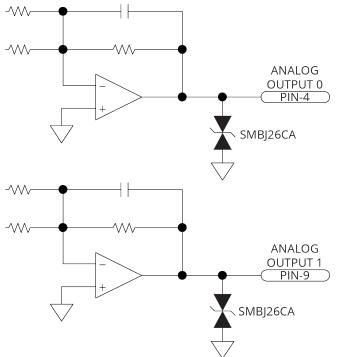
#### Table 2-42: Mating Connector Part Numbers for the Analog I/O Connectors

| Mating Connector   | Aerotech P/N | Third Party P/N               |
|--------------------|--------------|-------------------------------|
| 15-Pin D-Connector | ECK01287     | Amphenol 17EHD-015P-<br>AA000 |
| Backshell          | ECK01021     | Amphenol 17-1724-2            |

## 2.9.1. Analog Outputs

The analog outputs can be set from within a program or they can be configured to echo the state of select servo loop nodes.


The analog outputs are set to zero when you power on the system or reset the drive.


Table 2-43:Analog Output Specifications

| Specification       | Value          |
|---------------------|----------------|
| Output Voltage      | -10 V to +10 V |
| Output Current 5 mA |                |
| Resolution (bits)   | 16 bits        |

#### Table 2-44: Analog Output Pins on the Analog I/O Connector

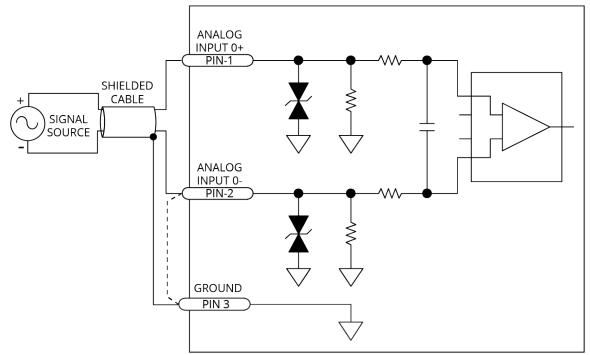
| Pin # | Description     | In/Out/Bi |
|-------|-----------------|-----------|
| 3     | Ground          | N/A       |
| 4     | Analog Output 0 | Output    |
| 5     | Ground          | N/A       |
| 8     | Ground          | N/A       |
| 9     | Analog Output 1 | Output    |
| 10    | Ground          | N/A       |
| 12    | Ground          | N/A       |





## 2.9.2. Analog Inputs (Differential)

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 2-44.


Table 2-45:Analog Input Specifications

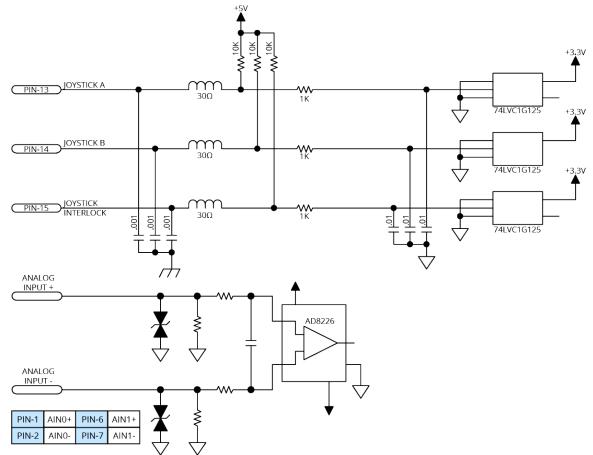
| Specification                                         | Value                         |  |
|-------------------------------------------------------|-------------------------------|--|
| (Al+) - (Al-)                                         | +10 V to -10 V <sup>(1)</sup> |  |
| Resolution (bits)                                     | 16 bits                       |  |
| Input Impedance 1 MΩ                                  |                               |  |
| 1. Signals outside of this range may damage the input |                               |  |

#### Table 2-46: Analog Input Pins on the Analog I/O Connector

| Pin # | Description      | In/Out/Bi |
|-------|------------------|-----------|
| 1     | Analog Input 0+  | Input     |
| 2     | Analog Input 0-  | Input     |
| 3     | Ground           | N/A       |
| 5     | Ground           | N/A       |
| 6     | Analog Input 1 + | Input     |
| 7     | Analog Input 1 - | Input     |
| 8     | Ground           | N/A       |
| 10    | Ground           | N/A       |
| 12    | Ground           | N/A       |

#### Figure 2-44: Analog Inputs Schematic

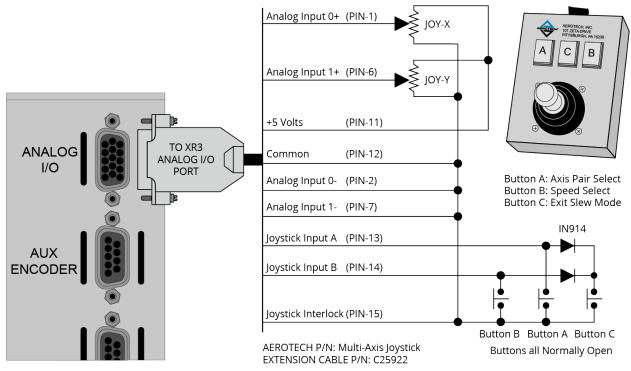



## 2.9.3. Joystick Interface

The Joystick Interface uses the two analog inputs and three dedicated inputs on the Analog I/O connector. Joystick operation requires that the two analog inputs be configured as single-ended inputs. The joystick interface is shown in Figure 2-45. Figure 2-46 shows you how to connect a joystick to the Analog I/O connector.

| Table 2-47. Joystick interface Phils on the Analog 1/0 connectors |                    |           |
|-------------------------------------------------------------------|--------------------|-----------|
| Pin #                                                             | Description        | In/Out/Bi |
| 1                                                                 | Analog Input 0+    | Input     |
| 2                                                                 | Analog Input 0-    | Input     |
| 6                                                                 | Analog Input 1 +   | Input     |
| 7                                                                 | Analog Input 1 -   | Input     |
| 11                                                                | +5 VA              | Output    |
| 12                                                                | Ground             | N/A       |
| 13                                                                | Joystick Button A  | Input     |
| 14                                                                | Joystick Button B  | Input     |
| 15                                                                | Joystick Interlock | Input     |








Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10V to +10V.

Refer to the Help file for programming information about how to change joystick parameters.

## Figure 2-46: Joystick Cable Wiring Schematic



## 2.10. Safe Torque Off Input (STO)

## IMPORTANT: iXR3 certification is pending.

The STO circuit is comprised of two identical channels, each of which must be energized in order for the controller to produce motion. Each channel is opto-isolated and provides individual connections to each terminal of the opto-coupler LED. Current limiting resistors are provided internally and the STO inputs are designed to work with 24 V signals.



**IMPORTANT**: The controller might be equipped with an STO bypass plug. The bypass plug defeats the STO safety circuit and allows the system to run at all times. To use the STO safety functionality, remove the plug and make connections as outlined in this section.



**IMPORTANT**: The application circuit and its suitability for the desired safety level is the sole responsibility of the user of the controller.



**WARNING**: STO wires must be insulated to prevent short circuits between connector pins. The primary concern is a short circuit between STO 1+ and STO 2+ wire strands or solder bridges.

#### Table 2-48: STO Connector Pinout

| Pin # | Signal         | Description                                                                      | ln/Out/Bi | Connector  |
|-------|----------------|----------------------------------------------------------------------------------|-----------|------------|
| 1     | STO 1+         | STO Channel 1 Positive Input                                                     | Input     |            |
| 2     | STO 2+         | STO Channel 2 Positive Input                                                     | Input     |            |
| 3     | Reserved       | Reserved                                                                         | N/A       |            |
| 4     | Power Supply + | Use only to defeat STO by connecting to STO 1+ and STO 2+. Not for customer use. | Output    |            |
| 5     | Reserved       | Reserved                                                                         | N/A       | •          |
| 6     | STO 1-         | STO Channel 1 Negative Input                                                     | Input     |            |
| 7     | STO 2-         | STO Channel 2 Negative Input                                                     | Input     | <b>5</b> 9 |
| 8     | Reserved       | Reserved                                                                         | N/A       |            |
| 9     | Power Supply - | Use only to defeat STO by connecting to STO 1- and STO 2 Not for customer use.   | Output    |            |

#### Table 2-49: Mating Connector Part Numbers for the STO Connector

| Mating Connector  | Aerotech P/N | Third Party P/N     |
|-------------------|--------------|---------------------|
| 9-Pin D-Connector | ECK00137     | Cinch DE-9P         |
| Backshell         | ECK01021     | Amphenol 17E-1724-2 |

## Table 2-50: STO Electrical Specifications

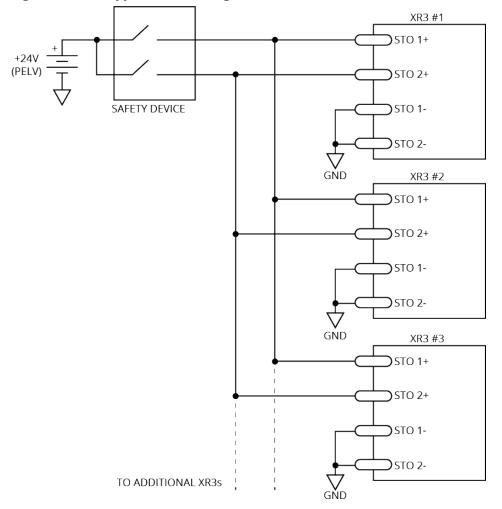

| Status                                 | Value                                   |
|----------------------------------------|-----------------------------------------|
| STO off (motion allowed)               | 18-24 V, 7 ma                           |
| STO on (safe state entered, no motion) | 0-6 V                                   |
| Recommended Wire Gauge                 | 22-26 AWG (0.5 - 0.14 mm <sup>2</sup> ) |
| STO System Power Supply                | PELV                                    |
| STO Wire Length (maximum)              | 50 m                                    |

Figure 2-47 shows one safety device connected to multiple controllers in parallel.



**WARNING**: The controller does not check for short circuits on the external STO wiring. If this is not done by the external safety device, short circuits on the wiring must be excluded. Refer to EN ISO 13849-2. For Category 4 systems, the exclusion of short circuits is mandatory.

Figure 2-47: Typical STO Configuration



## 2.10.1. STO Standards

Table 2-51 describes and specifies the safety requirements at the system level for the Safe Torque Off (STO) feature of the XSP3-10, -20, -30 and XSL3-10-40 products. This assumes that diagnostic testing is performed according to Section 2.10.4. and Table 2-52.

| Standard                          | Maximum Achievable Safety |
|-----------------------------------|---------------------------|
| EN/IEC 61800-5- 2:2016            | SIL 3                     |
| EN/IEC 61508-1:2010               | SIL 3                     |
| EN/IEC 61508-2:2010               | SIL 3                     |
| EN ISO 13849-1:2015               | Category 4, PL e          |
| EN/IEC 62061:2005 with Amendments | SIL 3                     |

### Table 2-52: STO Standards Data

| Standard            | Value                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
|                     | MTTF <sub>D</sub> > 1000 years,                                                                                    |
| EN ISO 13849-1:2015 | DC <sub>AVG</sub> 99%                                                                                              |
|                     | Maximum PL e, Category 4                                                                                           |
|                     | Lifetime = 20 years                                                                                                |
|                     | No proof test required                                                                                             |
| EN ISO 13849-1:2015 | Interval for manual STO test:                                                                                      |
| EN/IEC 61508        | <ul> <li>Once per year for SIL2/PL d/category 3</li> <li>Once per three months for SIL3/PL e/category 3</li> </ul> |
|                     | <ul> <li>Once per three months for SIL3/PL e/category 3</li> <li>Once per day for SIL3/PL e/category 4</li> </ul>  |
|                     | SIL3                                                                                                               |
| EN/IEC 61508        | PFH < 3 FIT                                                                                                        |
|                     | SFF > 99%                                                                                                          |

## 2.10.2. STO Functional Description

The motor can only be activated when voltage is applied to both STO 1 and STO 2 inputs. The STO state will be entered if power is removed from either the STO 1 or the STO 2 inputs. When the STO state is entered, the motor cannot generate torque or force and is therefore considered safe.

The STO function is implemented with two redundant channels in order to meet stated performance and SIL levels. STO 1 disconnects the high side power amplifier transistors and STO 2 disconnects the low side power amplifier transistors. Disconnecting either set of transistors effectively prevents the controller from being able to produce motion.

The controller software monitors each STO channel and will generate an Emergency Stop software fault when either channel signals the stop state. Each STO channel contains a fixed delay which allows the controller to perform a controlled stop before the power amplifier transistors are turned off.

A typical configuration requiring a controlled stop has the Emergency Stop Fault mask bit set in the FaultMask, FaultMaskDecel, and FaultMaskDisable parameters. This stops the axis using the rate specified by the AbortDecelRate parameter. The software will disable the axis as soon as the deceleration ramp is complete. This is typically configured to occur before the STO channel turns off the power amplifier transistors.

The software controlled stop functionality must be excluded when considering overall system safety. This is because the software is not safety rated and cannot be included as part of the safety function.

The controller will tolerate short diagnostic pulses on the STO 1+ and STO 2+ inputs. The parameter "STOPulseFilter" specifies the maximum pulse width that the controller will ignore.

To resume normal operation, apply power to both STO 1 and STO 2 inputs and use the *Acknowledge All* button or the AcknowledgeAll() or FaultAcknowledge() function to clear the Emergency Stop software fault. The recommended use of the Emergency Stop Fault fault mask bits prevent the system from automatically restarting.

You can achieve longer delay times through the use of an external delay timer, such as the Omron G9SA-321 Safety Relay Unit. Place this device between the system ESTOP wiring and the controller's STO inputs. Connect the ESTOP signal directly to a digital input, in addition to the external timer, to allow the controller to begin a software-controlled stop as soon as the ESTOP signal becomes active. Use the EmergencyStopFaultInput [A3200: ESTOPFaultInput] parameter to configure a digital input as an ESTOP input.

Non-standard STO delay times are provided by special factory order. In this case, the non-standard STO delay time is indicated by a label placed on the slice amplifier's main connector (STO DELAY = xx sec).

#### Table 2-53: STO Signal Delay

|                | Value        |
|----------------|--------------|
| STO Time Delay | 450-550 msec |

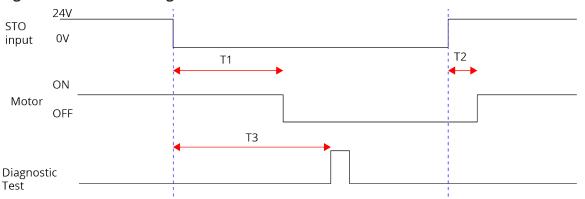
#### Table 2-54: Motor Function Relative to STO Input State

| STO 1                                                                                                | STO 2                    | Motor Function  |
|------------------------------------------------------------------------------------------------------|--------------------------|-----------------|
| Unpowered                                                                                            | Unpowered                | No force/torque |
| Unpowered <sup>(1)</sup>                                                                             | Powered <sup>(1)</sup>   | No force/torque |
| Powered <sup>(1)</sup>                                                                               | Unpowered <sup>(1)</sup> | No force/torque |
| Powered Powered Normal Operation                                                                     |                          |                 |
| 1. This is considered a Fault Condition since STO 1 and STO 2 do not match. Refer to Section 2.10.4. |                          |                 |

## 2.10.3. STO Startup Validation Testing

Verify the state of the STO 1 and STO 2 channels by manually activating the external STO hardware. Each STO channel must be tested separately in order to detect potential short circuits between the channels. The current state of the STO 1 and STO 2 inputs is shown in the Status Utility. A "–" indicates that the STO input is powered by a high voltage level (24 V). An "ON" indicates that the voltage source has been removed from the input (open circuit or 0 V), and that the STO channel is in the safe state.




**DANGER**: The STO circuit does not remove lethal voltage from the motor terminals. AC mains power must be removed before servicing.

## 2.10.4. STO Diagnostics

Activation of STO means removing power from the controller's STO inputs. This is typically done by pressing the emergency stop switch. The controller initiates a diagnostic check every time the STO is activated after the Diagnostic Test Delay Time has elapsed. The diagnostic check verifies that each channel has entered the safe state. The controller is held in the safe state if it determines that one of the channels has not properly entered the safe state. An open circuit or short to 24 V in either STO channel will result in this condition (refer to Section 2.10.3.). The Status Utility screen can be used to verify the levels of the STO input signals while trouble shooting.

In order to meet the listed SIL level, the STO circuit must be activated (power removed from both inputs) according to the interval specified in Table 2-52.

| Table 2 | Table 2-55: STO Timing                                                                                                             |              |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Time    | Description                                                                                                                        | Value        |  |
| T1      | STO Delay Time (STO input active to motor power off)                                                                               | 450-550 msec |  |
| T2      | STO deactivated to motor power on (the software is typically configured so that the motor does not automatically re-<br>energize). | < 1 msec     |  |
| T3      | Diagnostic Test Delay Time                                                                                                         | 550-610 msec |  |



#### Figure 2-48: STO Timing

The software is typically configured to execute a controlled stop when the STO state is first detected. If power is reapplied to the STO inputs before the STO Delay Time, an STO hardware shutdown will not occur but a software stop may, depending on the width of the STO pulse. The controller will ignore STO active pulses shorter in length than the STOPulseFilter parameter setting.

## 2.11. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.



**WARNING**: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

#### Table 2-56:HyperWire Card Part Number

| Part Number    | Description                          |  |
|----------------|--------------------------------------|--|
| HYPERWIRE-PCIE | HyperWire adapter, PCIe x4 interface |  |

#### Table 2-57: HyperWire Cable Part Numbers

| Part Number        | Description                             |  |
|--------------------|-----------------------------------------|--|
| HYPERWIRE-AO10-5   | HyperWire cable, active optical, 0.5 m  |  |
| HYPERWIRE-AO10-10  | HyperWire cable, active optical, 1.0 m  |  |
| HYPERWIRE-AO10-30  | HyperWire cable, active optical, 3.0 m  |  |
| HYPERWIRE-AO10-50  | HyperWire cable, active optical, 5.0 m  |  |
| HYPERWIRE-AO10-200 | HyperWire cable, active optical, 20.0 m |  |

## 2.12. Sync Port

The Sync port is a bi-directional high speed proprietary interface that lets you transmit encoder signals between drives. This is typically used for multi-axis PSO applications where one or two drives send their encoder signals to a main drive that has the PSO logic and PSO output signal. The drive rack contains two Sync ports, labeled A and B.

To avoid signal contention, all Sync ports default to the input state during reset and immediately after power is applied to the drive.



**IMPORTANT**: This feature is only available with software version Automation1 2.0 and higher.

**IMPORTANT**: You can only use the sync ports as outputs on the first axis controlled by the iXR3/XR3. You can use the sync ports as inputs on any of the iXR3/XR3 axes.

## Table 2-58: Sync-Related Functions

| Function                              | Description                                     |
|---------------------------------------|-------------------------------------------------|
| DriveEncoderOutputConfigureDivider(), |                                                 |
| DriveEncoderOutputConfigureInput(),   | Configure each Sync port as an input or an      |
| DriveEncoderOutputOn(),               | output                                          |
| DriveEncoderOutputOff()               |                                                 |
| PsoDistanceConfigureInputs()          | Let the PSO to track the SYNC A or SYNC B port. |
| PsoWindowConfigureInput()             | Let the FSO to track the STNC A of STNC B port. |

The Sync port uses low-voltage differential signaling (LVDS) and standard USB 3.0 type A (cross over) cables.

### Table 2-59:Sync Port Cables

| Part Number | Desciption                                         |
|-------------|----------------------------------------------------|
| CBL-SYNC-3  | Length 3 dm; Connectors: USB Type A to USB Type A  |
| CBL-SYNC-5  | Length 5 dm; Connectors: USB Type A to USB Type A  |
| CBL-SYNC-7  | Length 7 dm; Connectors: USB Type A to USB Type A  |
| CBL-SYNC-10 | Length 10 dm; Connectors: USB Type A to USB Type A |

## 2.13. Industrial Ethernet (iXR3 Only)

The controller is equipped with 100BASE-TX Industrial Ethernet ports.

**IMPORTANT**: Industrial Ethernet is only available on the iXR3.

- For the location of the ports, refer to Figure 1-1.
- For cable part numbers, refer to Table 1-1.
- For more information, refer to the Help system.

## 2.14. Cooling Options [-CO/-C1/-C2 Option]



**WARNING**: To prevent the drive rack from over-heating, do not obstruct the airflow path at the perforated covers.

The iXR3/XR3 has a standard rear fan on all models. The fan pulls air into the chassis. Refer to Figure 2-49.

## Figure 2-49: Location of the Rear Fan and Air Flow



## Built In Cooling [-C0]

Built-in fans pull cooling air from the left side through the amplifier compartment. Refer to Figure 2-50.

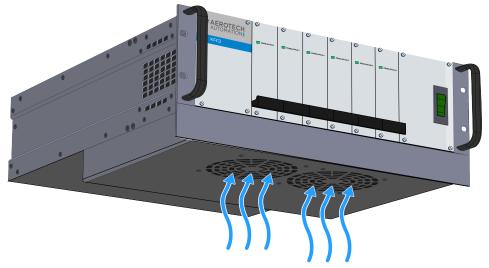
## Figure 2-50: -C0 Fan Location and Direction of Air Flow



## External Cooling Option [-C1]

If you ordered the External Cooling option, you will be required to provide forced air-cooling to the drive rack. You will need to direct airflow through the perforated covers. Refer to Figure 2-51.

| Amplifier Type          | Airflow Specification |
|-------------------------|-----------------------|
| XSP Amplifiers (PWM)    | 50 CFM                |
| XSL Amplifiers (linear) | 300 CFM               |


## Figure 2-51: -C1 Model Showing Perforated Covers for External Fans



## Fan Tray Option [-C2]

If you ordered the Fan Tray option, Aerotech will attach a 1U fan tray to the bottom of the chassis at the factory. The tray houses two fans that will direct airflow through the drive rack from the bottom to the top. Refer to Figure 2-52. For the dimensions, refer to Section 1.2.

Figure 2-52: -C2 1U Fan Location and Air Flow



## 2.15. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

# **Chapter 3: Maintenance**

**IMPORTANT**: For your own safety and for the safety of the equipment:

- Do not remove the cover of the iXR3/XR3.
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

**DANGER**: If you must remove the covers and access any internal components be aware of the risk of electric shock.

- 1. Disconnect the Mains power connection.
- 2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 3. All tests must be done by an approved service technician. Voltages inside the controller and at the input and output power connections can kill you.

## Table 3-1: LED Description

| LED                       | Color                                       | Description                                                              |
|---------------------------|---------------------------------------------|--------------------------------------------------------------------------|
| PWR                       | GREEN                                       | The light will illuminate and remain illuminated while power is applied. |
|                           | GREEN                                       | The axis is Enabled.                                                     |
|                           | RED                                         | The axis is in a Fault Condition.                                        |
| EN/FLT                    |                                             | The axis is Enabled in a Fault Condition.                                |
| GREEN/RED<br>(alternates) |                                             | or                                                                       |
|                           | The light is configured to blink for setup. |                                                                          |

### Table 3-2: Troubleshooting

| Symptom          | Possible Cause and Solution                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------|
| No Communication | Make sure the power LED is illuminated (this indicates that power is present).                      |
| No communication | Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports. |

## 3.1. Preventative Maintenance

Do an inspection of the iXR3/XR3 and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

### Table 3-3: Preventative Maintenance

| Check                                                                                                                                                                      | Action to be Taken                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Examine the chassis for hardware and parts<br>that are damaged or loose.<br>It is not necessary to do an internal inspection<br>unless you think internal damage occurred. | Repair all damaged parts.                                                                                                                  |
| Do an inspection of the cooling vents.                                                                                                                                     | Remove all material that collected in the vents.                                                                                           |
| Examine the work area to make sure there are no fluids and no electrically conductive materials.                                                                           | Do not let fluids and electrically conductive material go into the chassis.                                                                |
| Examine all cables and connections to make sure they are correct.                                                                                                          | Make sure that all connections are correctly<br>attached and not loose.<br>Replace cables that are worn.<br>Replace all broken connectors. |

## Cleaning



**DANGER**: Before you clean the iXR3/XR3, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the iXR3/XR3. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the drive rack. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.

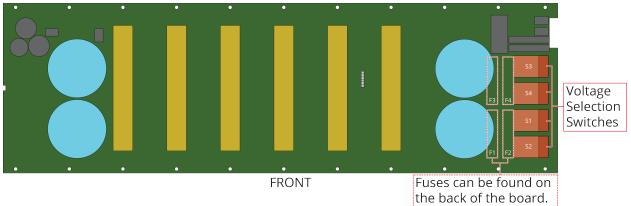
Do not clean the labels with a cleaning solution because it might remove the label information.

# 3.2. Fuse Specifications



**WARNING**: Replace fuses only with the same type and value.

Always disconnect the Mains power connection before you open the chassis. Fuses must not be changed with Mains power applied to the unit.


The fuses on the drive interface board are factory-configured based on the bus voltage configuration that you ordered. The fuses are not likely to blow under normal operating conditions.

The most likely reason for a fuse to blow is if you have connected the unit to the wrong AC line voltage.

| Bus   | Fuse              | Description      | Aerotech P/N | Manufacturer<br>P/N |
|-------|-------------------|------------------|--------------|---------------------|
|       | F1 (-VB1 to -VB2) | 2 A SLO BLO, 3AG | EIF00102     | Littelfuse 313002   |
|       | F1 (-VB3 to -VB5) | 3 A SLO BLO, 3AG | EIF00103     | Littelfuse 313003   |
| Bus 1 | F1 (-VB7 to -VB8) | Not Used         |              |                     |
|       | F2 (-VB1 to -VB5) | 4 A SLO BLO, 3AG | EIF00104     | Littelfuse 313004   |
|       | F2 (-VB7 to -VB8) | 7 A SLO BLO, 3AG | EIF00107     | Littelfuse 313007   |
|       | F3 (-VB1 to -VB2) | 2 A SLO BLO, 3AG | EIF00102     | Littelfuse 313002   |
|       | F3 (-VB3 to -VB5) | 3 A SLO BLO, 3AG | EIF00103     | Littelfuse 313003   |
| Bus 2 | F3 (-VB7 to -VB8) | Not Used         |              |                     |
|       | F4 (-VB1 to -VB5) | 4 A SLO BLO, 3AG | EIF00104     | Littelfuse 313004   |
|       | F4 (-VB7 to -VB8) | 7 A SLO BLO, 3AG | EIF00107     | Littelfuse 313007   |

 Table 3-4:
 Drive Interface Board Motor Power Fuse Replacement Part Numbers



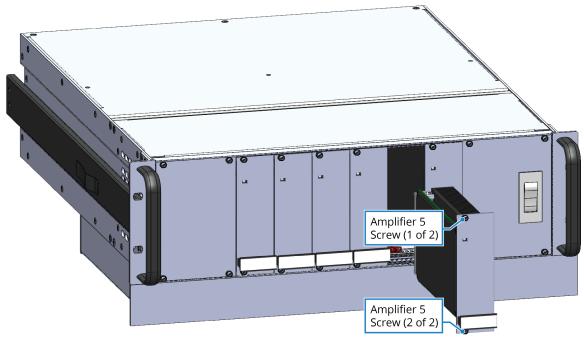


**IMPORTANT**: Due to inrush currents, these fuses must be of the Slow Blow type.

## 3.3. Amplifier Replacement

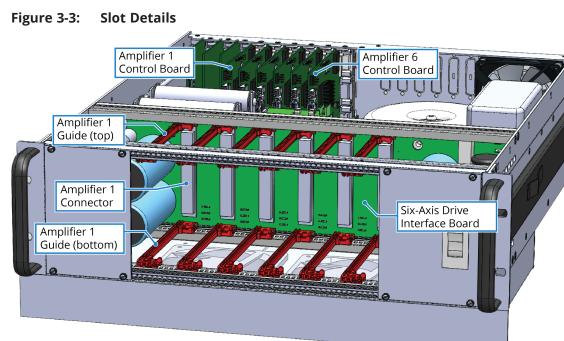


**IMPORTANT**: You can only install a new amplifier into a slot that has a corresponding control board. Control boards are factory-installed based on the number of axes ordered at the time of purchase.


**DANGER**: Risk of electric shock.

- 1. Disconnect the Mains power connection.
- 2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection.

To replace an amplifier:


- 1. Disconnect power.
- 2. Loosen the two screws that secure the amplifier. They cannot be removed from the amplifier panel.
- 3. Carefully slide the amplifier out of the slot.

## Figure 3-2: Amplifier Removal



4.Insert the new amplifier into the open slot.

- a. Be aware that the amplifier must fit into the top and bottom guides
- b. Make sure that the amplifier is fully seated against the Drive Interface Board connector at the rear of the amplifier slot.
- 5. Tighten the two screws to secure the amplifier card in place.



Top Cover and Amplifiers Removed For Clarity.

This page intentionally left blank.

# **Appendix A: Warranty and Field Service**

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

#### **Return Products Procedure**

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

### **Returned Product Warranty Determination**

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

**Fixed Fee Repairs** - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

**All Other Repairs** - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

#### **Rush Service**

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

#### **On-site Warranty Repair**

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

#### **On-site Non-Warranty Repair**

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

#### **Service Locations**

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO Aerotech, Inc. Global Headquarters

**TAIWAN** Aerotech Taiwan Full-Service Subsidiary **CHINA** Aerotech China Full-Service Subsidiary

**UNITED KINGDOM** Aerotech United Kingdom Full-Service Subsidiary **GERMANY** Aerotech Germany Full-Service Subsidiary

# **Appendix B: Voltage Selection Operation**



DANGER: Disconnect Mains power before opening chassis. Voltage selector settings must not be changed with Mains power applied to the unit.



DANGER: Wait at least ten (10) minutes after removing the power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.

**WARNING**: The voltage selector must be configured to match the AC line voltage and is factory-configured based on the options that you ordered. You could damage the unit if the voltage selector is set for the incorrect AC input voltage.

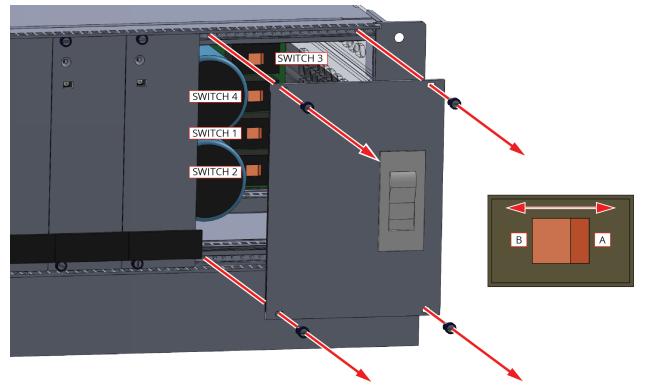


The voltage selector can only be used with transformer-derived bus voltages. This voltage selector function should not be changed when using off-line supplies. Damage to the unit may result if this function is used improperly.

If the user changes the voltage selector settings, it is also the user's responsibility to change the iXR3/XR3 AC power label located next to the AC inlet. Refer to the Section 1.1. for power ratings.

Procedure for setting AC voltage selector switches:

- 1. Turn-off and disconnect all power from unit.
- 2. Remove the four screws that secure the panel on the front of the iXR3/XR3
- 3. Carefully remove the panel without pulling out the wiring connected to the Power Switch.
- 4. Use Table B-1 to set all of the voltage selector switches to the position indicated for the desired operating voltage.




**WARNING**: Table B-1 applies to the Drive Interface Board with the P/N: EFN01746-01 (manual revision 1.00.00 and up). Customers with the Beta hardware and Beta manual revision should contact Aerotech for more information if you need to change voltage settings.

Table B-1: AC Voltage Selector Switch Settings

|         | S1 | <b>S2</b> | <b>S3</b> | S4 |
|---------|----|-----------|-----------|----|
| 100 VAC | A  | В         | A         | В  |
| 115 VAC | A  | А         | A         | A  |
| 200 VAC | В  | В         | В         | В  |
| 230 VAC | В  | А         | В         | A  |

Figure B-1: Voltage Selection Switch Access



# **Appendix C: Revision History**

| Revision | Description                                                                       |
|----------|-----------------------------------------------------------------------------------|
| 2.08     | Updated Table 1-5                                                                 |
| 2.07     | Added support for Industrial Ethernet                                             |
| 2.06     | Updated Section 2.12. Sync Port                                                   |
| 2.05     | Added support for Three Phase Stepper Motors: Section 2.2.4.                      |
|          | The following sections have been updated:                                         |
| 2.04     | added Section 3.3. Amplifier Replacement                                          |
|          | added iXR3 support                                                                |
|          | The following sections have been updated:                                         |
| 2.03     | EU Declaration of Conformity                                                      |
| 2.05     | Agency Approvals                                                                  |
|          | Added -C1 airflow specifications: Table 2-60                                      |
|          | Updated:                                                                          |
| 2.02     | EU Declaration of Conformity                                                      |
|          | Agency Approvals                                                                  |
|          | Updated: Table 2-12 and Table 2-40                                                |
| 2.01     | Added Absolute Encoder support on the Auxiliary I/O connector: Section 2.8.2.     |
|          | Absolute Encoder (Auxiliary)                                                      |
| 2.00     |                                                                                   |
| 1.03     |                                                                                   |
| 1.02     | Revision changes have been archived. If you need a copy of this revision, contact |
| 1.01     | Aerotech Global Technical Support.                                                |
| 1.00     |                                                                                   |
| Beta     |                                                                                   |

This page intentionally left blank.

| Index           |       | Analog Encoder Phasing Reference Diagram             | 74 |
|-----------------|-------|------------------------------------------------------|----|
|                 |       | Analog Encoder Schematic (Aux Encoder Connector)     | 75 |
|                 |       | Analog Encoder Specifications (Aux Connector)        | 74 |
| -               |       | Analog Encoder Specifications (Feedback Connector)   | 47 |
| -C0             | 89    | Analog I/O Connector Pinout                          | 76 |
| -C1             | 90    | Analog I/O Connectors                                | 76 |
| -C2             | 91    | Analog Inputs                                        | 78 |
| -CT1            | 47    | Analog Outputs                                       | 77 |
| -CT2            | 47    | Joystick Interface                                   | 79 |
| -CT4            | 47,74 | Mating Connector Part Numbers                        | 76 |
| -VB1            | 22    | Analog Input Pins on the Analog I/O Connector        | 78 |
| -VB2            | 22    | Analog Input Specifications (Analog I/O Connectors)  | 78 |
| -VB3            | 22    | Analog Inputs (Analog I/O Connectors)                | 78 |
| -VB4            | 22    | Analog Inputs Schematic                              | 78 |
| -VB5            | 22    | Analog Output Pins on the Analog I/O Connector       | 77 |
| -VB7            | 22    | Analog Output Specifications (Analog I/O Connectors) | 77 |
| -VB8            | 22    | Analog Outputs (Analog I/O Connectors)               | 77 |
| -VL1            | 22    | Analog Outputs Schematic (Analog I/O Connectors)     | 77 |
| -VL2            | 22    | Aux Connector                                        |    |
| -VL3            | 22    | Analog Encoder                                       | 74 |
| -VL4            | 22    | Sine Wave Encoder                                    | 74 |
|                 |       | Aux Encoder Connector                                | 71 |
| 1               |       | Absolute Encoder                                     | 73 |
| 1U Fan Location | 91    | Analog Encoder                                       | 47 |
|                 |       | Mating Connector Part Numbers                        | 71 |
| 2               |       | RS-422 Line Driver Encoder                           | 72 |
| 2006/112/156    | 0     | Sine Wave Encoder                                    | 47 |
| 2006/42/EC      | 9     | Square Wave Encoder                                  | 72 |
| 2011/65/EU      | 9     | Aux Encoder Connector Pinout                         | 71 |
| 2014/30/EU      | 9     | Auxiliary Power Outputs                              | 22 |
| 2014/35/EU      | 9     | Axis Amplifier                                       | 18 |
| •               |       | Axis Control Board                                   | 18 |
| A               |       |                                                      |    |

| Absolute Encoder (Aux Encoder)                     | 73  |
|----------------------------------------------------|-----|
| Absolute Encoder (Feedback Connector)              | 46  |
| Absolute Encoder Schematic (Aux Encoder Connector) | 73  |
| Absolute Encoder Schematic (Feedback Connector)    | 46  |
| AC Power Connections                               | 33  |
| AC Power Input                                     | 22  |
| AC Voltage Selector Switch Settings                | 102 |
| Agency Approvals                                   | 10  |
| Altitude                                           | 28  |
| Ambient Temperature                                | 28  |
| Analog Encoder (Aux Connector)                     | 74  |
| Analog Encoder (Aux Encoder)                       | 47  |

## В

| BiSS absolute encoder                                           | 46,73 |
|-----------------------------------------------------------------|-------|
| Brake Option Connections (Internal)                             | 56    |
| Brake Output (Feedback Connector)                               | 56    |
| Brake Output Pins on the Feedback Connector                     | 56    |
| Brake Output Specifications                                     | 56    |
| Brushless Motor Configuration (Motor Power Output<br>Connector) | 37    |
| Brushless Motor Connections (Motor Power Output                 | 27    |
| Connector)                                                      | 37    |
| Brushless Motor Phasing Goal                                    | 39    |
| Brushless Motor Phasing Oscilloscope Example                    | 39    |
|                                                                 |       |

# Index

# iXR3/XR3 Hardware Manual

| Brushless Motor Powered Motor Phasing                   |  |
|---------------------------------------------------------|--|
| Brushless Motor Unpowered Motor and Feedback<br>Phasing |  |
| Built In Cooling                                        |  |
| Built In Cooling [-C0]                                  |  |
| Bus Voltage 1 and Bus Voltage 2 Configurations          |  |
| Bus Voltage Options                                     |  |

## С

| Cable                                                |       |
|------------------------------------------------------|-------|
| C29522 (Joystick Extension Cable)                    | 80    |
| Cables                                               |       |
| HyperWire                                            | 87    |
| Sync Port                                            | 88    |
| cables, examining                                    | 94    |
| Check for fluids or electrically conductive material |       |
| exposure                                             | 94    |
| Cleaning                                             | 94    |
| Clock and Direction Output (High-Speed Outputs)      | 63    |
| Clock Inputs Schematic (PSO)                         | 60    |
| Commands                                             |       |
| Sync                                                 | 88    |
| Conducted and Radiated Emissions                     | 9     |
| connections, examining                               | 94    |
| Continuous Current                                   | 23    |
| Continuous Output Current                            | 23    |
| Cooling Options                                      | 19,89 |
| cooling vents, inspecting                            | 94    |
| Customer order number                                | 13    |

## D

| Data Acquisition Input (PSO)                                   | 61 |
|----------------------------------------------------------------|----|
| Data Acquisition Input Pins on the PSO Connector               | 61 |
| Data Acquisition Input Schematic (PSO)                         | 61 |
| Data Acquisition Opto-Isolator Input (PSO) Specifications      | 61 |
| DC Brush Motor Configuration (Motor Power Output<br>Connector) | 40 |
| DC Brush Motor Connections (Motor Power Output<br>Connector)   | 40 |
| DC Brush Motor Phasing                                         | 40 |
| Declaration of Conformity                                      | 9  |
| Diagram Showing Axis 1 and Axis 2 High-Speed Outputs           |    |
| (HSOUT Connector)                                              | 63 |
| Digital Input Pinout (DIN Connector)                           | 68 |
| Digital Input Schematic (DIN Connector)                        | 69 |
|                                                                |    |

| 38       | Digital Input Specifications (DIN Connector)                            | 68 |
|----------|-------------------------------------------------------------------------|----|
| 39       | Digital Inputs Connected to Current Sinking Devices (DIN Connector)     | 70 |
| 89<br>89 | Digital Inputs Connected to Current Sourcing Devices<br>(DIN Connector) | 70 |
| 18       | Digital Inputs Connector (DIN Connector)                                | 68 |
| 22       | Digital Output Pinout (DOUT Connector)                                  | 65 |
|          | Digital Output Schematic (DOUT Connector)                               | 66 |
|          | Digital Output Specifications (DOUT Connector)                          | 64 |
|          | Digital Outputs Connected in Current Sinking Mode<br>(DOUT Connector)   | 67 |
| 80       | Digital Outputs Connected in Current Sourcing Mode<br>(DOUT Connector)  | 67 |
| 87       | Digital Outputs Connnector (DOUT)                                       | 64 |
| 88       | Dimensions                                                              | 26 |
| 94       | Dimensions with Chassis Slides                                          | 26 |
|          | Dimensions without Chassis Slides                                       | 27 |
| 94       | DIN Connector                                                           | 68 |
| 94       | Mating Connector Part Numbers                                           | 68 |
| 63       | DIN Connector Digital Input Pinout                                      | 68 |
| 60       | DOUT Connector                                                          | 64 |
|          | Mating Connector Part Numbers                                           | 65 |
| 88       | DOUT Connector Digital Output Pinout                                    | 65 |
| 9        | Drawing number                                                          | 13 |
| 94       | Drive and Software Compatibility                                        | 29 |
| 23       | Drive Interface Board (Voltage Selection Switches)                      | 95 |
| 23       | Drive Interface Board Fuse Specifications                               | 95 |
| 20       |                                                                         |    |

## Ε

| Effective Heatsink Thermal Resistance             | 23    |
|---------------------------------------------------|-------|
| Electrical Installation                           | 31    |
| Electrical Safety for Power Drive Systems         | 9     |
| Electrical Specifications                         | 21-22 |
| Electromagnetic Compatibility (EMC)               | 9     |
| EMC/CE Compliance                                 | 34    |
| Enclosure                                         | 25    |
| encoder                                           |       |
| absolute                                          | 46,73 |
| Encoder and Hall Signal Diagnostics               | 38    |
| Encoder Fault Input (Feedback Connector)          | 52    |
| Encoder Fault Input Pin on the Feedback Connector | 52    |
| Encoder Input (Feedback Connector)                | 44    |
| Encoder Input Pins on the Feedback Connector      | 44    |
| Encoder Phasing                                   | 49    |
|                                                   |       |
| Encoder Phasing Reference Diagram                 | 49    |

| Encoder Quadrature Output (High-Speed Outputs)        | 63      |
|-------------------------------------------------------|---------|
| End of Travel Limit Input (Feedback Connector)        | 53      |
| End of Travel Limit Input Connections                 | 54      |
| End of Travel Limit Input Diagnostic Display          | 55      |
| End of Travel Limit Input Pins on the Feedback Connec | ctor 53 |
| End of Travel Limit Phasing                           | 55      |
| EnDat absolute encoder                                | 46,73   |
| Environmental Specifications                          | 28      |
| EU 2015/863                                           | 9       |
| examining parts                                       |         |
| cables                                                | 94      |
| connections                                           | 94      |
| examining, dangerous fluids                           | 94      |
| examining, dangerous material                         | 94      |
| External Cooling                                      | 89      |
| External Cooling Option [-C1]                         | 90      |
| External PSO Sync Input Pins on the PSO Connector     | 60      |
|                                                       |         |

#### F

| Fan                                               | 89   |
|---------------------------------------------------|------|
| Fan Tray Cooling                                  | 89   |
| Fan Tray Option [-C2]                             | 91   |
| Feature Summary                                   | 17   |
| Feedback Connector                                | 43   |
| Absolute Encoder                                  | 46   |
| Brake Output                                      | 56   |
| Encoder Fault Input                               | 52   |
| Encoder Input                                     | 44   |
| End of Travel Limit Input                         | 53   |
| Hall-Effect Inputs                                | 50   |
| Home Limit Input                                  | 53   |
| Pinout                                            | 43   |
| Primary Encoder Input                             | 44   |
| RS-422 Line Driver Encoder                        | 45   |
| Square Wave Encoder                               | 45   |
| Thermistor Input                                  | 51   |
| Travel Limit Input                                | 53   |
| Feedback Monitoring                               | 38   |
| Figure                                            |      |
| Absolute Encoder Schematic (Aux Encoder Connector | ) 73 |
| Absolute Encoder Schematic (Feedback Connector)   | 46   |
| Analog Encoder Schematic (Aux Encoder Connector)  | 75   |
| Analog Inputs Schematic                           | 78   |
|                                                   |      |

| Brake Option Connections (Internal)                                       | 56  |
|---------------------------------------------------------------------------|-----|
| Brushless Motor Configuration (Motor Power Output                         |     |
| Connector)                                                                | 37  |
| Clock Inputs Schematic (PSO)                                              | 60  |
| Data Acquisition Input Schematic (PSO)                                    | 61  |
| DC Brush Motor Configuration (Motor Power Output<br>Connector)            | 40  |
| Diagram Showing Axis 1 and Axis 2 High-Speed<br>Outputs (HSOUT Connector) | 63  |
| Digital Input Schematic (DIN Connector)                                   | 69  |
| Digital Inputs Connected to Current Sinking Devices<br>(DIN Connector)    | 70  |
| Digital Inputs Connected to Current Sourcing Devices<br>(DIN Connector)   | 70  |
| Digital Output Schematic (DOUT Connector)                                 | 66  |
| Digital Outputs Connected in Current Sinking Mode<br>(DOUT Connector)     | 67  |
| Digital Outputs Connected in Current Sourcing Mode<br>(DOUT Connector)    | 67  |
| Dimensions with Chassis Slides                                            | 26  |
| Dimensions without Chassis Slides                                         | 27  |
| Drive Interface Board (Voltage Selection Switches)                        | 95  |
| End of Travel Limit Input Connections                                     | 54  |
| End of Travel Limit Input Diagnostic Display                              | 55  |
| Hall-Effect Inputs Schematic                                              | 50  |
| Home Limit Input Connections                                              | 54  |
| Home Limit Input Diagnostic Display                                       | 55  |
| Isolated Output Current Sinks Schematic (PSO)                             | 58  |
| Isolated Output Current Sources Schematic (PSO)                           | 58  |
| Joystick Interface Inputs Schematic                                       | 79  |
| Joystick Wiring Schematic                                                 | 80  |
| Positive Motor Direction                                                  | 38  |
| Power and Control Connections 15-16,31                                    | -32 |
| PSO Clock Inputs Schematic                                                | 60  |
| PSO Isolated Output Sinks Current                                         | 58  |
| PSO Isolated Output Sources Current                                       | 58  |
| PSO TTL Outputs Schematic                                                 | 59  |
| Sine Wave Encoder Schematic (Aux Connector)                               | 75  |
| Square Wave Encoder Inputs Schematic (Aux Encoder<br>Connector)           | 72  |
| Square Wave Encoder Schematic (Feedback<br>Connector)                     | 45  |
| Stepper Motor Configuration                                               | 41  |
| STO Timing                                                                | 86  |
| Thermistor Input Schematic                                                | 51  |
| Three Phase Stepper Motor Configuration                                   | 42  |
| TTL Outputs Schematic (PSO)                                               | 59  |
|                                                                           |     |

# Index

| Typical STO Configuration | 82 |
|---------------------------|----|
| fluids, dangerous         | 94 |
| Functional Diagram        | 20 |
| Fuse Specifications       | 95 |
| Drive Interface Board     | 95 |

## н

| Hall-Effect Feedback Pins on the Feedback Connector |
|-----------------------------------------------------|
| Hall-Effect Inputs (Feedback Connector)             |
| Hall-Effect Inputs Schematic                        |
| Handling                                            |
| Heat Sink Temperature                               |
| High-Speed Outputs                                  |
| Home Limit Input (Feedback Connector)               |
| Home Limit Input Connections                        |
| Home Limit Input Diagnostic Display                 |
| Home Limit Input Pins on the Feedback Connector     |
| HSOUT Connector                                     |
| Mating Connector Part Numbers                       |
| HSOUT Connector Pinout                              |
| Humidity                                            |
| HyperWire                                           |
| Cable Part Numbers                                  |
| Card Part Number                                    |
|                                                     |

## I

| I/O and Signal Requirements                     | 34 |
|-------------------------------------------------|----|
| I/O and Signal Specifications                   | 34 |
| Indicator (Enabled)                             | 22 |
| Indicator (Power)                               | 22 |
| Input Current                                   | 22 |
| Input Line Voltage                              | 18 |
| Inrush Current                                  | 22 |
| inspecting cooling vents                        | 94 |
| Inspection                                      | 94 |
| Installation and Configuration                  | 31 |
| Installation Connection Overview                | 14 |
| Installation Overview                           | 14 |
| Internal Shunt                                  | 19 |
| Introduction                                    | 15 |
| IP54 Compliant                                  | 25 |
| IP54 Enclosure (STO)                            | 25 |
| Isolated Output Current Sinks Schematic (PSO)   | 58 |
| Isolated Output Current Sources Schematic (PSO) | 58 |

# iXR3/XR3 Hardware Manual

| Isolated Output Pins on the PSO Connector | 58 |
|-------------------------------------------|----|
| Isolated Outputs (PSO)                    | 58 |
|                                           |    |
| J                                         |    |
| Joystick                                  |    |
| Interface (Analog I/O Connectors)         | 79 |
| Joystick Interface                        |    |
| C29522 Extension Cable Part Number        | 80 |
| Cable Wiring Schematic                    | 80 |
| Inputs Schematic                          | 79 |
| Pins on the Analog I/O Connectors         | 79 |
|                                           |    |
| L                                         |    |
| Line Cord Ontions                         | 10 |

| Line Cord Options                          | 19 |
|--------------------------------------------|----|
| Linear Amplifier Electrical Specifications | 23 |

### Μ

| Main AC Power Input Voltages and Current Requiremen                       | ts 33 |
|---------------------------------------------------------------------------|-------|
| Maintenance                                                               | 93    |
| material, electrically conductive                                         | 94    |
| Mating Connector P/N                                                      |       |
| Analog I/O Connectors                                                     | 76    |
| Aux Encoder Connectors                                                    | 71    |
| DIN Connector                                                             | 68    |
| DOUT Connector                                                            | 65    |
| Feedback Connector                                                        | 43    |
| HSOUT Connector                                                           | 62    |
| Motor Power Output Connector                                              | 36    |
| STO Connector                                                             | 81    |
| Maximum Continuous Total Power Dissipation                                | 23    |
| Maximum Power Amplifier Bandwidth                                         | 23    |
| Maximum Transistor Temperature                                            | 23    |
| Mechanical Specifications                                                 | 25    |
| Minimizing Conducted, Radiated, and System Noise for<br>EMC/CE Compliance | 34    |
| Minimum Load Inductance                                                   | 23    |
| Motor Connector                                                           |       |
| Mating Connector Part Numbers                                             | 43    |
| Motor Function Relative to STO Input State                                | 85    |
| Motor Power Output Connector                                              | 36    |
| Brushless Motor Connections                                               | 37    |
| DC Brush Motor Connections                                                | 40    |
| Mating Connector Part Numbers                                             | 36    |
| Pinout                                                                    | 36    |

# iXR3/XR3 Hardware Manual

| Stepper Motor Connections             |  |
|---------------------------------------|--|
| Three Phase Stepper Motor Connections |  |
| Mounting and Cooling                  |  |
| Mounting Options                      |  |
| Multi-Axis Joystick                   |  |

## 

| Operation | 28 |
|-----------|----|
| Overview  | 15 |

#### Ρ

| packing list                                       | 13    |
|----------------------------------------------------|-------|
| PC Configuration and Operation Information         | 92    |
| Peak Bus Voltage                                   | 23    |
| Peak Current                                       | 23    |
| Peak Motor Output Current                          | 23    |
| Phasing                                            |       |
| DC Brush Motor                                     | 40    |
| End of Travel Limits                               | 55    |
| Powered Brushless Motor                            | 38    |
| Stepper Motor                                      | 41-42 |
| Unpowered Brushless Motor/Feedback                 | 39    |
| Pinout                                             |       |
| Analog I/O Connector                               | 76    |
| Analog Input Pins (Analog I/O Connector)           | 78    |
| Analog Output Pins (Analog I/O Connector)          | 77    |
| Aux Encoder Connector                              | 71    |
| Brake Output Pins (Feedback Connector)             | 56    |
| Data Acquisition Input Pins (PSO Connector)        | 61    |
| Digital Inputs (DIN Connector)                     | 68    |
| Digital Outputs (DOUT Connector)                   | 65    |
| DIN Connector                                      | 68    |
| DOUT Connector                                     | 65    |
| Encoder Fault Input Pin (Feedback Connector)       | 52    |
| Encoder Input (Feedback Connector)                 | 44    |
| End of Travel Limit Input Pins (Feedback Connector | ) 53  |
| External PSO Sync Input Pins on the PSO Connector  | - 60  |
| Feedback Connector                                 | 43    |
| Hall-Effect Feedback Pins (Feedback Connector)     | 50    |
| Home Limit Input Pins (Feedback Connector)         | 53    |
| HSOUT Connector                                    | 62    |
| Isolated Output Pins (PSO Connector)               | 58    |
| Joystick Interface Pins (Analog I/O Connectors)    | 79    |
| Motor Power Output Connector                       | 36    |

| Primary Encoder Inputs (Feedback Connector     | r)       | 44  |
|------------------------------------------------|----------|-----|
| PSO Connector                                  |          | 57  |
| STO Connector                                  |          | 81  |
| Thermistor Input Pin (Feedback Connector)      |          | 51  |
| TTL Output Pins (PSO Connector)                |          | 59  |
| Pollution                                      |          | 28  |
| Position Feedback in the Diagnostic Display    |          | 49  |
| Position Synchronized Output (PSO) Connector   |          | 57  |
| Positive Motor Direction                       |          | 38  |
| Power and Control Connections                  | 15-16,31 | -32 |
| Power Connections                              |          | 33  |
| Power Requirements                             |          | 24  |
| Preventative Maintenance                       |          | 94  |
| Primary Encoder Input (Feedback Connector)     |          | 44  |
| Primary Encoder Input Pins on the Feedback Cor | nnector  | 44  |
| Protection                                     |          | 22  |
| PSO                                            |          |     |
| Connector                                      |          | 57  |
| Connector Pinout                               |          | 57  |
| Data Acquisition Input                         |          | 61  |
| Isolated Output Sinks Current Schematic        |          | 58  |
| Isolated Output Sources Current Schematic      |          | 58  |
| Isolated Outputs                               |          | 58  |
| TTL Outputs                                    |          | 59  |
| TTL Outputs Schematic                          |          | 59  |
| PSO Clock Inputs Schematic                     |          | 60  |
| PSO Isolated Outputs Specifications            |          | 58  |
| PSO Options                                    |          | 19  |
| PSO Specifications                             |          | 57  |
| PSO TTL Outputs Specifications                 |          | 59  |
| PWM Switching Frequency                        |          | 23  |
|                                                |          |     |

## R

| Resolute absolute encoder                         | 46,73    |
|---------------------------------------------------|----------|
| Revision History                                  | 103      |
| RS-422 Encoder Specifications (Feedback Connector | r) 45,72 |
| RS-422 Line Driver Encoder                        | 45       |
| RS-422 Line Driver Encoder (Aux Encoder Connecto  | r) 72    |

## S

| Safe Torque Off Input (STO)    | 81    |
|--------------------------------|-------|
| Safety Procedures and Warnings | 11    |
| serial data stream             | 46,73 |
| serial number                  | 13    |

# Index

| Servo Amplifier Electrical Specifications                   | 23       |
|-------------------------------------------------------------|----------|
| Sine Wave Encoder (Aux Connector)                           | 74       |
| Sine Wave Encoder (Aux Encoder Connector)                   | 47       |
| Sine Wave Encoder Phasing Reference Diagram                 | 74       |
| Sine Wave Encoder Schematic (Aux Encoder Connector          | r) 75    |
| Sine Wave Encoder Specifications (Aux Connector)            | 74       |
| Sine Wave Encoder Specifications (Feedback Connecto         | r) 47    |
| Specifications                                              |          |
| Analog Encoder (Aux Connector)                              | 74       |
| Analog Encoder (Feedback Connector)                         | 47       |
| Analog Input (Analog I/O Connectors)                        | 78       |
| Analog Output (Analog I/O Connectors)                       | 77       |
| Brake Output                                                | 56       |
| Data Acquisition Opto-Isolator Input (PSO)                  | 61       |
| Digital Inputs (DIN Connector)                              | 68       |
| Digital Outputs (DOUT Connector)                            | 64       |
| Drive Interface Board Fuses                                 | 95       |
| I/O and Signal                                              | 34       |
| PSO                                                         | 57       |
| PSO Isolated Outputs                                        | 58       |
| PSO TTL Outputs                                             | 59       |
| RS-422 Encoder (Feedback Connector)                         | 45,72    |
| Sine Wave Encoder (Aux Connector)                           | 74       |
| Sine Wave Encoder (Feedback Connector)                      | 47       |
| Square Wave Encoder (Feedback Connector)                    | 45,72    |
| STO Electrical Specifications                               | 82       |
| Unit Weight                                                 | 25       |
| Split Bus Options                                           | 18       |
| Square Wave Encoder                                         | 45       |
| Square Wave Encoder (Aux Encoder)                           | 72       |
| Square Wave Encoder Inputs Schematic (Aux Encoder           | 70       |
| Connector)                                                  | 72       |
| Square Wave Encoder Schematic (Feedback Connector           | ) 45     |
| Square Wave Encoder Specifications (Feedback<br>Connector)  | 45,72    |
| Standard Features                                           | 17       |
| Stepper Motor Configuration                                 | 41       |
| Stepper Motor Connections (Motor Power Output<br>Connector) | 41       |
| Stepper Motor Phasing                                       | 41-42    |
| STO                                                         | 81       |
| Connector Pinout                                            | 81       |
| Diagnostics                                                 | 86       |
| Electrical Specifications                                   | 82       |
| External Delay Timer                                        | 82<br>84 |
|                                                             | 0-       |

| Functional Description                         | 84 |
|------------------------------------------------|----|
| IP54 Enclosure                                 | 25 |
| Mating Connector Part Numbers                  | 81 |
| Motor Function Relative to the STO Input State | 85 |
| Signal Delay                                   | 85 |
| Standards                                      | 83 |
| Standards Data                                 | 83 |
| Startup Validation Testing                     | 85 |
| Timing                                         | 86 |
| Typical Configuration                          | 82 |
| Storage                                        | 13 |
| Sync-Related Commands                          | 88 |
| Sync Port Cables                               | 88 |
| Sync Ports                                     | 88 |
| System part number                             | 13 |
| System Power Requirements                      | 24 |
|                                                |    |

## т

| Table of Contents                                                       | 3  |
|-------------------------------------------------------------------------|----|
| Thermistor Input (Feedback Connector)                                   | 51 |
| Thermistor Input Pin on the Feedback Connector                          | 51 |
| Thermistor Input Schematic                                              | 51 |
| Three Phase Stepper Motor Configuration                                 | 42 |
| Three Phase Stepper Motor Connections (Motor Power<br>Output Connector) | 42 |
| Time to reach maximum temperature at maximum continuous power           | 23 |
| Travel Limit Input (Feedback Connector)                                 | 53 |
| TTL Output Pins on the PSO Connector                                    | 59 |
| TTL Outputs (PSO)                                                       | 59 |
| TTL Outputs Schematic (PSO)                                             | 59 |
| Typical STO Configuration                                               | 82 |

## U

| Unit Weight | 25 |
|-------------|----|
| Use         | 28 |

## v

| 01 |
|----|
| 02 |
|    |
| 95 |
|    |

## W

Warranty and Field Service

99

This page intentionally left blank.