
THE UNIDEX 600 SERIES CNC
PROGRAMMING, WIN NT/95

MANUAL

P/N: EDU158 (V1.1)

AEROTECH, Inc. • 101 Zeta Drive • Pittsburgh, PA. 15238-2897 • USA
Phone (412) 963-7470 • Fax (412) 963-7459

Product Service: (412) 967-6440; (412) 967-6870 (Fax)

www.aerotechinc.com

The UNIDEX 600 is a product of Aerotech, Inc.
Windows 95 and Windows NT are registered trademarks of Microsoft Corporation.
Visual Parse++ is a registered trademark of Sandstone

The UNIDEX 600 Series CNC Programming, Win NT/95 Manual Revision History:

Rev 1.0 July, 1997
Rev 1.1 June 6, 2000

U600 CNC Programming Manual Table of Contents

Version 1.1 Aerotech, Inc. iii

TABLE OF CONTENTS

CHAPTER 1: Introduction and Overview ... 1-1
1.1. Introduction .. 1-1
1.2. Purpose of This Manual.. 1-1
1.3. Prerequisites ... 1-2
1.4. Related Documentation .. 1-2

1.4.1. Hardware Manuals ... 1-2
1.4.2. Programming Manuals ... 1-3
1.4.3. MMI Interface Manual ... 1-3

1.5. CNC Design Philosophy... 1-3
1.6. CNC Functionality Summary.. 1-4
1.7. Syntactic Descriptions .. 1-4

1.7.1. Elements of the Syntactic Description.................................. 1-5
1.7.2. Keyword Case Sensitivity .. 1-6
1.7.3. White space .. 1-6
1.7.4. Syntax Description Examples... 1-7
1.7.5. Limitations and Bounds.. 1-7

CHAPTER 2: Commands .. 2-1
2.1. Description ... 2-1

2.1.1. Command Sets.. 2-1
2.1.2. Conformance to Standards ... 2-1

2.2. Programs... 2-2
2.2.1. White space .. 2-2
2.2.2. Line Terminators .. 2-2
2.2.3. Characters... 2-2
2.2.4. Comments... 2-3
2.2.5. Lines... 2-3
2.2.6. Block Delete... 2-3

CHAPTER 3: Expressions ... 3-1
3.1. Description ... 3-1
3.2. Expressions... 3-1

3.2.1. Expression Elements .. 3-1
3.2.2. Expression Types ... 3-2
3.2.3. Expression Components ... 3-2
3.2.4. Expression Examples ... 3-2

3.3. CNC and Axis Letters... 3-3
3.4. CNC Masks (Axis Masks) .. 3-4
3.5. CNC Words .. 3-4
3.6. CNC Block Expressions ... 3-5

3.6.1. CNC Block Constants .. 3-5
3.6.1.1. CNC G-code Blocks... 3-6
3.6.1.2. Axis Points ... 3-6
3.6.1.3. Argument Lists ... 3-6

3.6.2. APT Variables.. 3-7
3.7. Floating-Point Expressions... 3-7

3.7.1. Floating-Point Constants .. 3-7
3.7.2. Floating Point Variables... 3-8
3.7.3. Floating Point Operators .. 3-8

Table of Contents U600 CNC Programming Manual

iv Aerotech, Inc. Version 1.1

3.7.4. Floating Point Functions... 3-9
3.7.5. Floating Point Computation Precedence 3-10

3.8. Integer Expressions... 3-12
3.8.1. Integer Constants.. 3-12

3.8.1.1. Hexadecimal Numbers 3-12
3.8.2. Integer Operators.. 3-13

3.9. String 32 Expressions ... 3-14
3.9.1. String32 Constants ... 3-15
3.9.2. String32 Variables.. 3-15
3.9.3. String 32 Operators .. 3-15

3.10. Labels ... 3-15
3.11. Variants... 3-16

3.11.1. Variant Types ... 3-16
3.11.2. Variant Names.. 3-16
3.11.3. Assignments to Variants ... 3-17
3.11.4. Variables .. 3-18

3.11.4.1. Global Variables... 3-18
3.11.4.2. Task Variables.. 3-20
3.11.4.3. Program Variables.. 3-20
3.11.4.4. Program Array Variables.................................... 3-21

3.11.5. Parameters .. 3-22
3.11.5.1. Aliases .. 3-22
3.11.5.2. Global Parameters .. 3-23
3.11.5.3. Task Parameters ... 3-24
3.11.5.4. Axis Parameters.. 3-25
3.11.5.5. Machine Parameters ... 3-26
3.11.5.6. Modifying Parameters from within a CNC

Program.. 3-26
3.11.6. Virtual I/O .. 3-28

3.11.6.1. Binary I/O Bits ... 3-28
3.11.6.2. Virtual I/O Registers .. 3-29
3.11.6.3. Analog Inputs ... 3-29

3.11.7. Call Arguments... 3-30
3.11.7.1. Call Argument Existence Testing....................... 3-31

CHAPTER 4: Compiler Directive Commands... 4-1
4.1. Overview .. 4-1

4.1.1. Compiler Directives Syntax.. 4-2
4.2. Define Statements ... 4-2

4.2.1. The Target Word .. 4-3
4.2.2. Recognition of the Target Word... 4-3
4.2.3. The Replacement String ... 4-4
4.2.4. Replacement with Multiple Lines... 4-5
4.2.5. Replacement within Replacement Strings 4-5

4.3. Include Statement ... 4-6
4.3.1. Filenames ... 4-6
4.3.2. Standard Include Files .. 4-6

4.4. AxisNames Statement... 4-7

U600 CNC Programming Manual Table of Contents

Version 1.1 Aerotech, Inc. v

CHAPTER 5: G-code Commands ... 5-1
5.1. Introduction .. 5-2

5.1.1. Motion Types Available... 5-2
5.1.2. Motion Commands Available... 5-3
5.1.3. Prerequisites for Initiating Motion from the CNC................ 5-4
5.1.4. Command .vs. Actual .. 5-4
5.1.5. Target Positions.. 5-5
5.1.6. Simultaneous Movement of Multiple Axes 5-5
5.1.7. Velocity.. 5-6
5.1.8. Acceleration/Deceleration.. 5-7
5.1.9. Further Information .. 5-7
5.1.10. Modal ... 5-7
5.1.11. Default.. 5-8

5.2. CNC Block Syntax ... 5-13
5.2.1. CNC Blocks ... 5-13
5.2.2. N Words ... 5-14
5.2.3. Motion Blocks.. 5-14

5.2.3.1. Simple Mode Words .. 5-15
5.2.3.2. F, E and S Codes (Rate Words) 5-16
5.2.3.3. Motion Modifier Words 5-21
5.2.3.4. Motion Type Words ... 5-21
5.2.3.5. Offset Words .. 5-21

5.2.4. Stand-Alone Blocks.. 5-21
5.2.5. Parameter Setting Blocks ... 5-22

5.2.5.1. F-code Parameter Blocks 5-22
5.2.5.2. Mask Parameter Blocks...................................... 5-22
5.2.5.3. Point Parameter Blocks 5-22

5.3. Non-Contoured Motion (G0).. 5-23
5.3.1. Point-to-Point Positioning at a Rapid Feedrate

(Motion) G0 ... 5-23
5.4. Contoured Motion (G1, G2, G3) .. 5-24

5.4.1. Linear Interpolation (Motion) G1....................................... 5-24
5.4.2. Circular Interpolation CW on Coordinate System #1

(Motion) G2 .. 5-25
5.4.3. Circular Interpolation CCW on Plane #1 (Motion) G3 5-34

5.5. Dwell (G4).. 5-35
5.5.1. Dwell G4 .. 5-35
5.5.2. Asynchronous Dwells... 5-35

5.6. Velocity Blending (G8, G9, G108, G109)....................................... 5-36
5.6.1. Instantaneous Acceleration G8... 5-39
5.6.2. Force Deceleration G9 ... 5-40

5.7. Contoured Motion on Coordinate System # 2 (G12, G13) 5-41
5.7.1. Circular Interpolation CW on Coordinate System #2

(Motion) G12 ... 5-41
5.7.2. Circular Interpolation CCW on Coordinate System #2

G13... 5-42
5.8. Coordinate System #1 Configuration (G16 – G19) 5-43

5.8.1. Assign Coordinate System #1 Axes G16............................ 5-43
5.8.2. Plane Selection Codes Set # 1 G17/G18/G19 5-44

5.9. Normalcy Motion Overview (G20, G21, G22)................................. 5-45
5.9.1. Disable Normalcy Mode G20... 5-48

Table of Contents U600 CNC Programming Manual

vi Aerotech, Inc. Version 1.1

5.9.2. Activate Normalcy Mode Left G21.................................... 5-48
5.9.3. Activate Normalcy Mode Right G22.................................. 5-49

5.10. Corner Rounding (G23, G24) G23 ... 5-50
5.10.1. Disable Corner Rounding Mode G24................................. 5-50

5.11. Coordinate System #2 Configuration (G26 – G29) 5-51
5.11.1. Assign Coordinate System #2 Axes G26............................ 5-51
5.11.2. Plane Selection Codes for Coordinate System #2

G27/G28/G29... 5-51
5.12. Software Limits Overview.. 5-52

5.12.1. Configuring Software Limits .. 5-52
5.13. Safe Zones (G34, G35, G36, G37) ... 5-52

5.13.1. Set Safe Zone Minimum Values G34 5-54
5.13.2. Set Safe Zone Maximum Values G35 5-54
5.13.3. Enable Safe Zones G36 .. 5-54
5.13.4. Disable Safe Zones G37 ... 5-55
5.13.5. Safe Zone Activation.. 5-56
5.13.6. Configuring and Using Safe Zones..................................... 5-56

5.14. Backlash Compensation (G38, G39) ... 5-57
5.14.1. Enable Backlash Compensation G38.................................. 5-57
5.14.2. Disable Backlash Compensation G39 5-57

5.15. Cutter Radius Compensation (G40, G41, G42, G43, G45) 5-58
5.15.1. CNC Block Look-Ahead Requirements in Cutter

Compensation Mode... 5-59
5.15.2. Cutter Radius Compensation Lead-On and Lead-Off

Moves... 5-60
5.15.3. Interaction of Mirroring and Cutter Compensation

Commands.. 5-60
5.15.4. Cutter Compensation Limitations within Inside

Corners ... 5-60
5.15.5. Cutter Compensation within Outside Corners 5-62
5.15.6. Deactivate Cutter Compensation (ICRC) G40 5-63
5.15.7. Activate ICRC Left G41... 5-64
5.15.8. Activate ICRC Right G42... 5-65
5.15.9. Set Cutter Compensation Radius G43 5-66
5.15.10. Set Cutter Compensation Axes G44 5-67

5.16. Polar/Cylindrical Transformations (G45, G46, G47) 5-68
5.16.1. Disable Polar or Cylindrical Coordinate

Transformation G45 ... 5-68
5.16.2. Enable Polar Coordinate Transformation G46 5-68
5.16.3. Enable Cylindrical Coordinate Transformation G47.......... 5-71
5.16.4. Monitor Touch Probe G51 ... 5-73
5.16.5. Define Polar/Cylindrical Transformation Axes G52 5-73

5.17. Fixture Offsets (G53 – G59)... 5-74
5.17.1. Cancel Fixture Offset G53.. 5-74
5.17.2. Set Fixture Offset #1 G54... 5-74
5.17.3. Set Fixture Offset #2 G55... 5-76
5.17.4. Set Fixture Offset #3 G56... 5-76
5.17.5. Set Fixture Offset #4 G57... 5-77
5.17.6. Set Fixture Offset #5 G58... 5-78
5.17.7. Set Fixture Offset #6 G59... 5-79

5.18. Contoured Accel/Decel Overview (G60, G61)................................. 5-81

U600 CNC Programming Manual Table of Contents

Version 1.1 Aerotech, Inc. vii

5.18.1. Explicit Feedrates and Automatic Acceleration 5-82
5.18.2. Set Acceleration Time G60 .. 5-83
5.18.3. Set Deceleration Time G61 .. 5-83

5.19. Profile Resolution Time (G62) ... 5-84
5.19.1. Set Profile Time G62 ... 5-84

5.20. Accel/Decel Rates and Modes (G63 -> G68) 5-84
5.20.1. Sinusoidal (1-Cosine) Accel/Decel Mode G63 5-84
5.20.2. Linear Accel/Decel Mode G64... 5-86
5.20.3. Set Acceleration Rate (for linear type axes) G65 5-86
5.20.4. Set Deceleration Rate (for linear type axes) G66 5-87
5.20.5. Time Based Acceleration/Deceleration G67 5-87
5.20.6. Rate Based Acceleration/Deceleration G68 5-88

5.21. Metric/English Units (G70, G71) ... 5-89
5.21.1. Inch Dimension Programming Mode (Units) G70 5-89
5.21.2. Metric Dimension Programming Mode (Units) G71.......... 5-90

5.22. Restore Preset Position Registers G82 ... 5-90
5.23. Transformation Overview (G83, G84) ... 5-91

5.23.1. Mirror Image G83 .. 5-91
5.23.2. Parts Rotation G84 ... 5-93

5.24. Positioning Modes (G90, G91)... 5-95
5.24.1. Absolute Dimension Programming Mode (Distance)

G90... 5-95
5.24.2. Incremental Position Programming (Distance) G91........... 5-96

5.25. Preset Positions (G92) .. 5-97
5.25.1. Software Home (Set Preset Positions) G92........................ 5-97

5.26. Feedrate Modes (G93, G94, G95) .. 5-99
5.26.1. Inverse Time Feedrate Programming (FeedrateMode)

G93... 5-99
5.26.2. Feed Per Minute Feedrate Programming

(FeedrateMode) G94 .. 5-100
5.26.3. Feed Per Spindle Revolution Feedrate Programming

G95... 5-101
5.26.4. Surface Speed Spindle Feedrate Programming G96 5-102
5.26.5. RPM Spindle Feedrate Programming G97....................... 5-104

5.27. Dominant Feedrate Overview (G98, G99)...................................... 5-105
5.27.1. Rotary Feedrate Dominant G98.. 5-106
5.27.2. Linear Feedrate Dominant G99 .. 5-107

5.28. Spindle Shutdown Modes (G100, G101).. 5-108
5.28.1. Disable Spindle Shutdown Mode G100 5-108
5.28.2. Enable Spindle Shutdown Mode G101 5-108

5.29. Modal Velocity Profiling (G108, G109) .. 5-109
5.29.1. No Deceleration to Zero Velocity Between Moves

G108... 5-109
5.29.2. Force Deceleration to Zero Velocity Between Moves

G109... 5-109
5.30. Circular Direction Codes (G110, G111)... 5-110

5.30.1. Normal Circular Interpolation G110 5-110
5.30.2. Inverse Circular Interpolation G111................................. 5-111

5.31. Block Delete Mode (G112, G113) ... 5-112
5.31.1. Set Block Delete Mode G112 .. 5-112
5.31.2. Clear Block Delete Mode G113 5-112

Table of Contents U600 CNC Programming Manual

viii Aerotech, Inc. Version 1.1

5.32. Optional Stop Mode (G114, G115) .. 5-113
5.32.1. Set Optional Stop Mode G114 ... 5-113
5.32.2. Clear Optional Stop Mode G115...................................... 5-113

5.33. Dry Run Mode (G116, G117)... 5-113
5.33.1. Dry Run Mode Enabled G116.. 5-113
5.33.2. Dry Run Mode Disabled G117... 5-113

5.34. Servo Update Rate (G130, G131)... 5-114
5.34.1. 4 Kilohertz Servo Update Rate G130............................... 5-114
5.34.2. 1 Kilohertz Servo Update Rate G131............................... 5-114

5.35. Cutter Tool Offset Compensation Overview (G143, G144,
G149).. 5-115
5.35.1. Activate Positive Cutter (Tool) Offsets G143 5-115
5.35.2. Activate Negative Cutter (Tool) Offsets G144................. 5-116
5.35.3. Deactivate Cutter (Tool) Offsets G149 5-116

5.36. Scale Factor (G150, G151)... 5-117
5.36.1. Clear Scale Factor G150 .. 5-117
5.36.2. Set Scale Factor G151 .. 5-117
5.36.3. The Scaling Center ... 5-118

5.37. Suspend All Fixture Offsets G153 .. 5-119
5.38. Rotary Axis Acceleration Rates (G165, G166) 5-120

5.38.1. Set Acceleration Rate (for Rotary Type Axes) G165 5-120
5.38.2. Set Deceleration Rate (for Rotary Type Axes) G166 5-120

5.39. Block Delete2 Mode (G212, G213) ... 5-121
5.39.1. Set Block Delete2 Mode G212... 5-121
5.39.2. Clear Block Delete2 Mode G213 5-121

5.40. CNC Block Look-Ahead (G300, G301) ... 5-122
5.40.1. Disable Multi-Block Look-Ahead G300 5-123
5.40.2. Enable Multi-Block Look-Ahead G301 5-123
5.40.3. CNC Block Look-Ahead Conditions that Force (G9)

Deceleration ... 5-123
5.40.4. CNC Block Look-Ahead Failures 5-124

5.41. High Speed Machining (G310, G311) .. 5-126
5.41.1. Disable High Speed Machining G310 5-126
5.41.2. Enable High Speed Machining G311 5-126
5.41.3. High Speed Machining Limitations.................................. 5-126
5.41.4. Continue when Velocity command is Zero G360............. 5-127
5.41.5. Wait till In-Position G361 .. 5-127

5.42. M-codes .. 5-128
5.42.1. Program Stop M0 ... 5-128
5.42.2. Optional Stop M1... 5-128
5.42.3. End of Program M2.. 5-128
5.42.4. Spindle On Clockwise M3, M23, M33, M43 5-129
5.42.5. Spindle On Counterclockwise M4, M24, M34, M44 5-129
5.42.6. Spindle Off M5, M25, M35, M45 5-130
5.42.7. Spindle Off/Reorient M19, M219, M319, M419 5-130
5.42.8. Restart Program Execution and Wait for Cycle Start

M30 .. 5-130
5.42.9. Machine Lock Mode .. 5-131
5.42.10. Machine Lock Enabled M41 .. 5-131
5.42.11. Machine Lock Disabled M42 ... 5-131
5.42.12. Restart Program Execution M47 5-131

U600 CNC Programming Manual Table of Contents

Version 1.1 Aerotech, Inc. ix

5.42.13. Feedrate Override Lock M48 ... 5-132
5.42.14. Feedrate Override Unlock M49.. 5-132
5.42.15. Spindle Feedrate Override Lock M50 5-132
5.42.16. Spindle Feedrate Override Unlock M51 5-132
5.42.17. Loop over Near Call to Subroutine M97.......................... 5-133
5.42.18. Loop over Far Call to Subroutine M98 5-133
5.42.19. Spindle On Clockwise Asynchronously M103, M123,

M133, M143 .. 5-134
5.42.20. Spindle On Counter-Clockwise Asynchronously

M104, M124, M134, M144 ... 5-134

CHAPTER 6: Extended Commands ... 6-1
6.1. Introduction .. 6-1
6.2. Motion with Extended Commands ... 6-2
6.3. Host vs. Axis Processor Based Commands .. 6-2

6.3.1. Axis Processor Based Extended Commands 6-2
6.3.2. Host Based Extended Commands .. 6-2

6.3.2.1. Time-outs ... 6-3
6.3.2.2. Error Returns from the CallBack

Commands.. 6-3
6.3.2.3. Return Values from the Callback

Commands.. 6-4
6.3.2.4. Parameters to a Callback Command..................... 6-4

6.4. RS-447 Extended Commands... 6-5
6.4.1. Auto Focus AFCO... 6-9
6.4.2. ALIGN Command.. 6-10
6.4.3. BIND Axis Command BIND .. 6-12
6.4.4. Call Subroutine Command CALL / CLS............................ 6-13
6.4.5. CallDLL Command.. 6-14
6.4.6. Capture Axis... 6-14
6.4.7. CFGMASTER Command (Configure Master Axis) 6-15
6.4.8. Change Axis Configuration from within a CNC

Program.. 6-15
6.4.9. COMMINIT ... 6-17
6.4.10. COMMSETTIMEOUT.. 6-18
6.4.11. Data Acquisition Start DATASTART................................ 6-19
6.4.12. Data Acquisition Stop DATASTOP................................... 6-25
6.4.13. Define Subroutine .. 6-25
6.4.14. DISABLE Axes Command .. 6-26
6.4.15. Displaying Text in the CDW Window DISPLAY.............. 6-27
6.4.16. Define Program Variable or Array DVAR........................ 6-27

6.4.16.1. Define Program Variable 6-28
6.4.16.2. Define Program Array.. 6-28

6.4.17. ENABLE Command... 6-29
6.4.18. End motion (Asynchronous) ENDM................................. 6-30
6.4.19. Execute DOS or Windows Program EXE 6-30
6.4.20. EXECCANNEDFUNCTION Command 6-32
6.4.21. Execute DOS or Windows Program and Wait for

Completion... 6-32
6.4.22. FARCALL FARCALL / PGM / PRG 6-33
6.4.23. Jump to program FARGOTO / FARJUMP........................ 6-34

Table of Contents U600 CNC Programming Manual

x Aerotech, Inc. Version 1.1

6.4.24. FEDM Command ... 6-35
6.4.25. File and Serial Port Command Overview........................... 6-35

6.4.25.1. File Close Command FILECLOSE 6-36
6.4.25.2. File Existence Testing Command....................... 6-36
6.4.25.3. File Open Command FILEOPEN....................... 6-36
6.4.25.4. FILEREAD Command FILEREAD 6-37
6.4.25.5. FILEREADINI Command.................................. 6-39
6.4.25.6. File Write Command FILEWRITE 6-40
6.4.25.7. FILEWRITEINI Command................................ 6-42

6.4.26. Free axes FREE.. 6-43
6.4.27. FREECAMTABLE Command... 6-43
6.4.28. Goto to a CNC block GOTO / JUMP................................. 6-44
6.4.29. HANDWHEEL Command HAND / HANDWHEEL 6-45
6.4.30. Home Command HOME / REF... 6-46
6.4.31. HOMEASYNC Command HOMEASYNC 6-47
6.4.32. IF Command IF ... THEN ... ELSE ... ENDIF.................... 6-47

6.4.32.1. IF ... GOTO command 6-48
6.4.32.2. IF ... THEN Command 6-48

6.4.33. INDEX Command INDEX... 6-50
6.4.34. IsAvail, Axes Available Command 6-50
6.4.35. Camming Motion Overview... 6-51

6.4.35.1. Axis Parameters Affecting Camming 6-53
6.4.35.2. Axis Parameters Used To Monitor

Camming Motion ... 6-53
6.4.35.3. Camming Performance Tip 6-53
6.4.35.4. Master Axis Selection .. 6-53
6.4.35.5. Synchronizing Multiple Axes 6-54
6.4.35.6. Camming Motion from a File 6-54
6.4.35.7. Infeeding Overview.. 6-56
6.4.35.8. Asynchronous Motion Commands 6-56
6.4.35.9. Camming Example Program............................... 6-58
6.4.35.10.Cam Table Format.. 6-58
6.4.35.11.Cam Table Format Example............................... 6-60

6.4.36. LOADCAMTABLE Command.. 6-62
6.4.37. #MAKENCODESLABELS ... 6-63
6.4.38. MAP Command MAP .. 6-64
6.4.39. MaskToDouble Command ... 6-64
6.4.40. MOVETO (Asynchronous Absolute Move)

Command ... 6-65
6.4.41. MSET Command.. 6-66
6.4.42. MSGxxx Commands Overview.. 6-66

6.4.42.1. MSGBOX Command ... 6-67
6.4.42.2. MSGCLEAR Command..................................... 6-70
6.4.42.3. MSGDISPLAY Command................................. 6-71
6.4.42.4. MSGHIDE Command .. 6-72
6.4.42.5. MSGINPUT Command...................................... 6-72
6.4.42.6. MSGLAMP# Command..................................... 6-74
6.4.42.7. MSGMENU Command...................................... 6-75
6.4.42.8. MSGSHOW Command...................................... 6-76
6.4.42.9. MSGTASK Command 6-76

6.4.43. ON command ON... 6-77

U600 CNC Programming Manual Table of Contents

Version 1.1 Aerotech, Inc. xi

6.4.44. Conditional ONGOSUB Command ONGOSUB 6-79
6.4.45. Oscillate Move Command OSC ... 6-88
6.4.46. POPMODES Command... 6-89
6.4.47. PUSHMODES Command .. 6-89
6.4.48. Initialize Touch Probe PROBE .. 6-90
6.4.49. PROGRAMDOWNLOADFILE Command 6-91
6.4.50. PROGRAMEXECUTE Command..................................... 6-92
6.4.51. PROGRAMEXECUTEFILE Command 6-92
6.4.52. PROGRAMTASKRESET Command 6-93
6.4.53. PROGRAMUNLOAD Command 6-94
6.4.54. PSO Card Based Commands.. 6-95

6.4.54.1. Configuring the PSO-PC Card to Fire a
Laser... 6-96

6.4.55. Position Synchronized Output Firing Distance Entry
PSOD ... 6-97
6.4.55.1. Mode Argument for PSOD Command 6-97
6.4.55.2. Pulse Output at an Incremental Distance

PSOD 0 .. 6-97
6.4.55.3. Fire Equidistantly PSOD 7................................. 6-99
6.4.55.4. Offset Firing Pulse PSOD 8 6-99

6.4.56 Enable/Disable Position Synchronized Output Firing
PSOF.. 6-100
6.4.56.1. Mode Arguments for PSOF.............................. 6-100
6.4.56.2. Disable Laser Output Pulse PSOF 0................. 6-100
6.4.56.3. Laser Output Fires Continuously PSOF1 6-100
6.4.56.4. Fire Laser a Specified Number of Times

PSOF 2... 6-101
6.4.56.5 Laser Output Synchronized with Position

PSOF 3... 6-101
6.4.57. Position Synchronized Output Pulse Configuration

PSOP.. 6-102
6.4.57.1. Mode Arguments for PSOP.............................. 6-102
6.4.57.2. Simple Single Pulse PSOP 0 6-102
6.4.57.3. Single Pulse with Lead, Width and Trail

PSOP 1... 6-103
6.4.57.4. Level based Laser Control................................ 6-103
6.4.57.5. Simple One-shot Pulse PSOP 4....................... 6-104

6.4.58. Position Synchronized Output Scaling PSOS................... 6-105
6.4.58.1. Disabling Scaling PSOS 0................................ 6-105
6.4.58.2. Enable Scaling PSOS 1 6-105
6.4.58.3. Define PSO Axes Scaling PSOS 2 6-105

6.4.59 Digital/Analog Output Command PSOT.......................... 6-106
6.4.59.1. MODE Argument for PSOT 6-106
6.4.59.2. Set Individual Output State PSOT 0 6-106
6.4.59.3. Set Analog Outputs to Discrete Values

PSOT 2... 6-107
6.4.59.4. Velocity Ramping PSOT 4............................... 6-108
6.4.59.5. Position Ramping PSOT 6 6-109
6.4.59.6. PSOT 4 velocity Argument 6-111
6.4.59.7. PSOT 6 position Argument 6-111

6.4.60. Release Command.. 6-112

Table of Contents U600 CNC Programming Manual

xii Aerotech, Inc. Version 1.1

6.4.61. Repeat Loop REPEAT / RPT... 6-112
6.4.62. Canned Function Overview.. 6-113

6.4.62.1. SETCANNEDFUNCTION Command............. 6-113
6.4.62.2. Disabling Canned Functions............................. 6-114

6.4.63. Return from Subroutine/Program RETURN 6-117
6.4.63.1. RETURN from an ONGOSUB Command....... 6-117

6.4.64. SetParm Command... 6-119
6.4.65. Slew Command SLEW... 6-119
6.4.66. Start Motion (STRM) Command STRM.......................... 6-120
6.4.67. String Functions ... 6-121

6.4.67.1. STRLEN... 6-121
6.4.67.2. STRCMP.. 6-122
6.4.67.3. STRFIND... 6-122
6.4.67.4. STRCHAR ... 6-123
6.4.67.5. STRTODBL... 6-123
6.4.67.6. STRTOASCII... 6-124
6.4.67.7. STRUPR... 6-124
6.4.67.8. STRLWR ... 6-124
6.4.67.9. DBLTOSTR... 6-125
6.4.67.10.STRMID... 6-125

6.4.68. SYNC Command SYNC .. 6-126
6.4.69. Track Command ... 6-128
6.4.70. VOLCOMP Command... 6-131
6.4.71. Wait Command WAIT ... 6-132
6.4.72. Conditional Looping WHILE / WHL.............................. 6-132

CHAPTER 7: Custom Commands .. 7-1
7.1. Introduction .. 7-1
7.2. Custom M-codes (Using Defines)... 7-2

7.2.1. Custom M-Code Tips ... 7-2
7.3. Custom G-codes (Using Calls) ... 7-3

7.3.1. Custom G-Code Tips.. 7-5
7.4. Custom Commands (Using Callback Commands) 7-5

APPENDIX A: Glossary of Terms.. A-1
A.1. Introduction ... A-1

APPENDIX B: WARRANTY AND FIELD SERVICE .. B-1

INDEX

∇ ∇ ∇

U600 CNC Programming Manual List of Figures

Version 1.1 Aerotech, Inc. xiii

LIST OF FIGURES

Figure 4-1. Flow of Execution of Compiler Directives... 4-1

Figure 5-1. CW Circular Interpolation.. 5-25
Figure 5-2. Orientation of a G2, in various planes in Coord. System #1 5-26
Figure 5-3. Orientation of a G3, in various planes in Coord. System #1 5-26
Figure 5-4. PQ Method Example.. 5-27
Figure 5-5. “R” Method Example... 5-28
Figure 5-6. Circular Radius Example ... 5-30
Figure 5-7. Arc Center Change... 5-32
Figure 5-8. CCW Circular Interpolation... 5-34
Figure 5-9. G8 and G9 Velocity Profile.. 5-36
Figure 5-10. Velocity Profile with G8 .. 5-39
Figure 5-11. Velocity Profile Without G9 .. 5-40
Figure 5-12. Velocity Profile with G9 .. 5-41
Figure 5-13. Coordinate System 1 (Clockwise or G2 motion).................................. 5-44
Figure 5-14. Tool Orientation... 5-45
Figure 5-15. Normalcy Left .. 5-49
Figure 5-16. Normalcy Right.. 5-49
Figure 5-17. Coordinate System 2 Orientation (Clockwise or G2 Motion) 5-51
Figure 5-18. Unrestricted Safe Zones ... 5-55
Figure 5-19. Cutter Radius Compensation Path.. 5-59
Figure 5-20. Cutter Compensation with Intervening Statements 5-59
Figure 5-21. Cutter Radius Compensation Lead-On Moves..................................... 5-60
Figure 5-22. Inside Corner.. 5-61
Figure 5-23. Outside Corner (Diagram A).. 5-63
Figure 5-24. Lead Off Moves ... 5-64
Figure 5-25. Path Compensation Left ... 5-65
Figure 5-26. Path Compensation Right... 5-66
Figure 5-27. Polar/Cylindrical Transformations Diagram .. 5-69
Figure 5-28. X, Y, Rotational and Optional Infeed Axis .. 5-72
Figure 5-29. Feedrate Changes ... 5-82
Figure 5-30. UpdateTimeSec Diagram... 5-84
Figure 5-31. Constant vs. Cosine Acceleration... 5-85
Figure 5-32. G83 Mirror Image Example 1 .. 5-92
Figure 5-33. G83 Mirror Image Example 2 .. 5-92
Figure 5-34. G84 Parts Rotation Example.. 5-94
Figure 5-35. Absolute Mode Programming .. 5-95
Figure 5-36. Incremental Mode Programming.. 5-96
Figure 5-37. Scale Factor Example... 5-117
Figure 5-38. Scaling Center Illustration.. 5-118
Figure 5-39. Scaling Center Illustration 2... 5-119

Figure 6-1. Align Command Function Illustration.. 6-11
Figure 6-2. Master/Slave Profile... 6-55
Figure 6-3. MSGBOX Pop-up Message Example .. 6-67
Figure 6-4. The CDW Display List Window.. 6-71
Figure 6-5. MSGINPUT Command Message Box Display.................................... 6-72
Figure 6-6. MSGMENU Command Display... 6-75
Figure 6-7. Trigger Pulse Fired at Constant Increments ... 6-97

List of Figures U600 CNC Programming Manual

xiv Aerotech, Inc. Version 1.1

Figure 6-8. Single Pulse Generated on Firing Condition 6-102
Figure 6-9. Single Pulse Output with Lead, Width, and Trail............................... 6-103
Figure 6-10. Single One-shot Pulse Output .. 6-104
Figure 6-11. User-Specified Analog Voltage.. 6-107
Figure 6-12. Velocity Ramping... 6-109
Figure 6-13. Position Ramping ... 6-111
Figure 6-14. Track Command D Diagram .. 6-129

∇ ∇ ∇

U600 CNC Programming Manual List of Tables

Version 1.1 Aerotech, Inc. xv

LIST OF TABLES

Table 1-1. UNIDEX 600 Series Interface Manuals... 1-2
Table 1-2. Syntactic Description Language Components.. 1-6

Table 3-1. Expression Examples ... 3-3
Table 3-2. Summary of Floating-Point Operators Available (Where α and

β are Arguments) ... 3-9
Table 3-3. Summary of Floating-Point Functions Available (Where α is the

Argument) .. 3-10
Table 3-4. Operator Precedence Indexes... 3-11
Table 3-5. Summary of Integer Operators Available (Where α and β are

Arguments)... 3-13
Table 3-6. Summary of Bitwise Operations... 3-14
Table 3-7. Variant Names.. 3-17

Table 5-1. Where to Find Details .. 5-2
Table 5-2. CNC Move Options ... 5-3
Table 5-3. G-code and M-code Summary ... 5-8
Table 5-4. Required Order of Axes in a G44, when no G16 has been

Executed... 5-67
Table 5-5. Transformation from an X/Y Cartesian Plane to a Polar

Coordinate System ... 5-68
Table 5-6. Transformation from an X/Y Cartesian Plane to a Cylindrical

Coordinate System ... 5-71
Table 5-7. Fixture Offset Example .. 5-80
Table 5-8. Accel/Decel G-codes Summary ... 5-81
Table 5-9. G-Codes to Change Axes Used for Circular Interpolation................. 5-110
Table 5-10. Relationship of Arc Direction, Plane, & Circle Center point 5-111
Table 5-11. The Five Look-Ahead Cases .. 5-122

Table 6-1. Where to Find Details .. 6-1
Table 6-2. Extended Command Categories ... 6-2
Table 6-3. Extended Command Summary... 6-5
Table 6-4. Data Available for Collection .. 6-23
Table 6-5. Mode Parameter Values ... 6-38
Table 6-6. Configuring Camming Motion ... 6-52
Table 6-7. Configuring Camming Motion Cleanup ... 6-52
Table 6-8. Button Specifiers.. 6-68
Table 6-9. Input Window Specifiers (* = DEFAULT).. 6-73
Table 6-10. Button Specifiers (* = DEFAULT) .. 6-73
Table 6-11. Distance Calculations for Multiple Axes Using the PSOD

Command ... 6-98

∇ ∇ ∇

List of Tables U600 CNC Programming Manual

xvi Aerotech, Inc. Version 1.1

U600 CNC Programming Manual Preface

Version 1.1 Aerotech, Inc. xvii

PREFACE

This section gives you an overview of topics covered in each of the sections of this
manual as well as defining the terminology and conventions used in this manual. This
manual contains information on the following topics:

CHAPTER 1: OVERVIEW

This chapter introduces the Aerotech CNC language.

CHAPTER 2: COMMANDS

This chapter describes the general syntax of CNC programs and lines. It explains the
different sets of commands available. This chapter does not address the functionality or
syntax of any specific commands; this is done in chapters 4,5, and 6.

CHAPTER 3: EXPRESSIONS

This chapter describes the syntax and functionality of all the elements of the Aerotech
CNC language except for those that specifically relate to specific commands. For
example, this chapter describes how to construct variables and expressions, but does not
explain how to construct a G1 or an IF command.

CHAPTER 4: COMPILER DIRECTIVE COMMANDS

This chapter describes the syntax and functionality of the Compiler Directive commands.

CHAPTER 5: G-CODE COMMANDS

Chapter 5 describes the syntax and functionality of the G-code commands.

CHAPTER 6: EXTENDED COMMANDS

Chapter 6 describes the syntax and functionality of the Extended commands.

CHAPTER 7: CUSTOM COMMANDS

This chapter describes how the user can define their own G or M-codes to be the
execution of a custom CNC program. This is especially useful in the context of defining
complex I/O functionality.

APPENDIX A: GLOSSARY OF TERMS

APPENDIX B: WARRANTY AND FIELD SERVICE

Appendix B contains the warranty and field service policy for Aerotech products.

Preface U600 CNC Programming Manual

xviii Aerotech, Inc. Version 1.1

INDEX

The index contains a page number reference of topics discussed in this manual. Locator
page references in the index contain the chapter number (or appendix letter) followed by
the page number of the reference. Locator page numbers appear in one style: standard
serif font (e.g., 3-1).

CUSTOMER SURVEY FORM

A customer survey form is included at the end of this manual for the reader’s comments
and suggestions about this manual. Readers are encouraged to critique the manual and
offer their feedback by completing the form and either mailing or faxing it to Aerotech.

Throughout this manual the following conventions are used:

é The terms UNIDEX 600 and U600 are used interchangeably throughout this
manual

é The modal symbol (see left) appears in the outer margin next to commands
that are modal for quick reference

é Each section in the remaining chapters of this manual describes one or more
language elements, where a language element is defined as a command or an
expression. Each section details both the semantic and syntactic features of the
language element(s) it addresses

é The callback symbol (see left) appears in the outer margin next to commands
that are callback commands for quick reference

é Many sections will use language elements defined in other sections or chapters,
and therefore the user may have to reference several sections to understand a
single language element. However to make things easier, the language elements
within a chapter (aside from the introduction section) are organized in alphabetic
order, keyed on the language element name. As a further aid, “page tabs” are
shown in the outside margins, naming the language elements described within
that page

é Note symbols (see left) appear in the outer margins next to notes following
sections or paragraphs

é The section title will usually match the name of the language element described
within, aside from minor formatting differences. For example, the language
element “<axisPoint>” is described under the section titled “Axis Points.”
However some sections will describe more than one language object. For
example the section on “Floating Point Numbers” contains descriptions of the
two language elements: “<floatingPointConstants>“ and
“<floatingPointVariables>“. Therefore, the description of a language object may
not always be found under a section title equivalent to its name.

é MFO is an acronym for Manual Feed Override
é This manual uses the symbol “∇ ∇ ∇” to indicate the end of a chapter.

Although every effort has been made to ensure consistency, subtle differences may exist
between the illustrations in this manual and the component and/or software screens that
they represent.

∇ ∇ ∇

U600 CNC Programming Manual Introduction and Overview

Version 1.1 Aerotech, Inc. 1-1

CHAPTER 1: INTRODUCTION AND OVERVIEW

In This Section: Page
• Introduction.. 1-1
• Purpose of This Manual 1-1
• Prerequisites ... 1-2
• Related Documentation 1-2
• CNC Design Philosophy 1-3
• CNC Functionality Summary 1-4
• Syntactic Descriptions...................................... 1-4

1.1. Introduction

The UNIDEX 600 Series Computer Numerical Control (CNC) programming language is
a large and powerful set of commands that permit the user to write simple or complex
motion control programs in a large variety of formats.

This chapter summarizes the major features of the UNIDEX 600 Series CNC language.

1.2. Purpose of This Manual

This manual is for programmers writing CNC (Computer Numerically Controlled)
programs on a UNIDEX 600 Series Motion controller.

This manual does not require prior knowledge of the CNC language. It covers all aspects
of the U600 Series CNC language syntax and functionality, serving as both a reference
and tutorial on the subject. Also, it is the only manual addressing the Aerotech CNC
language of the U600 Series controllers.

Running a CNC program involves at least the following steps:

1. Writing correct CNC program text.

2. Executing the CNC program including the following steps

2a. Running the CNC compiler to produce a binary object file from the
program text.

2b. Downloading the binary object file to the U600 Motion Controller.

2c. Executing and monitoring the program on the U600 Motion
Controller.

This manual only addresses step 1. Please see the documentation relative to the interface
being used for information on how to run the CNC compiler, download programs, and run
programs on the Motion Controller card. Table 1-1 lists the appropriate manuals.

Introduction and Overview U600 CNC Programming Manual

1-2 Aerotech, Inc. Version 1.1

Table 1-1. UNIDEX 600 Series Interface Manuals

Interface Manual

C language and/or Visual Basic EDU156 U600 Series Library Reference,
Win NT/95 Manual

C++ Language SDK Online Help File

MMI MMI Online Help File

1.3. Prerequisites

Prior knowledge of CNC language standards and related industry accepted definitions of
M-codes and G-codes is not required.

Prior knowledge of programming in general is not strictly required. However, it must be
expected that any reader who is inexperienced in writing programs will not be able to
easily construct correct Aerotech U600 CNC programs due to the numerous pitfalls and
obstacles inherent in constructing any working computer program.

Knowledge of motion control concepts such as feedback loops and contoured motion are
not strictly required. However, it must be expected that the reader who is inexperienced
in motion control concepts will not be able to easily construct the more sophisticated
CNC programs initially.

The reader must read and understand the CNC programming sections in the programming
chapter of the U600 Series User’s Guide, P/N EDU157, to take full advantage of the
CNC interface and avoid wasting time writing inefficient or poorly operating CNC
programs.

1.4. Related Documentation

The UNIDEX 600 Series of controllers has several other manuals documenting various
aspects of the controllers use, hardware or programming, some of which are included as
part of optional hardware or software.

1.4.1. Hardware Manuals

For a description of the controller’s hardware, reference the hardware manual for the
UNIDEX 600 Hardware Manual (P/N EDU154). Other related Aerotech hardware
manuals are the DR500 Hardware Manual (P/N EDA120), the BA Series Amplifier
Manual (P/N EDA121), and the PSO-PC (Laser Firing) Manual (P/N EDO105).

U600 CNC Programming Manual Introduction and Overview

Version 1.1 Aerotech, Inc. 1-3

1.4.2. Programming Manuals

This manual covers the CNC G-code programming language. For Visual Basic and C
programmers, reference the UNIDEX 600 Series Library Reference Manual (P/N
EDU156). For OLE Custom Control programming, reference the Software Development
Kit Online Help File

1.4.3. MMI Interface Manual

For information on using the MMI600-NT CNC Application, reference the MMI Online
Help File).

1.5. CNC Design Philosophy

The U600 CNC language is specifically designed to achieve the following goals:
flexibility, reliability, and power. The following major design decisions influenced the
U600 Series CNC Compiler construction.

• All capabilities available to the U600 Series Motion Controller must be
available to the U600 Series CNC compiler.

• An externally provided parser was used within the compiler: Visual Parse++
by SandStone. Syntax parsing is a complex subject, only mastered over the
decades and is best left to the experts and specialists in that field.

• Bounds and limits were avoided as much as possible by taking advantage of
dynamic allocation. For example, there is no inherent limit to the number of
lines in a program, characters in a variable, program depth, and WHILE block
nesting.

• Whenever possible, C language constructs and conventions are followed. For
example, the conditional and bit operators are identical to those used in the C
programming language.

• As much as possible, variant forms of equivalent syntax were accommodated.
For example, both “WHILE” and “whl” are allowed.

• Functionality is matched by single or multiple test cases maintained in a
regression library continuously tested and re-tested. This guarantees a
minimum level of functionality regardless of new features added. Aerotech
developed an “approximation diffrencing” capability to compare test results
that come from actual motion on the controller. In other words, we can test
functionality even in the presence of random variations caused by inter-
processor timing or physical environment variation such as vibration.

 • M code requirements vary widely based on the specific application. For
example, when setting an output bit, the programmer needs the CNC to wait
until one or more input bits are set, verifying the setting of the I/O before
continuing to the next step in the CNC Program. Aerotech offers maximum
flexibility by allowing M-codes to be CNC programs where the user can
define any sort of behavior. Refer to Chapter 7: Custom Commands for
details.

Introduction and Overview U600 CNC Programming Manual

1-4 Aerotech, Inc. Version 1.1

1.6. CNC Functionality Summary

The Aerotech CNC language provides all the functionality specified by the RS-274D and
RS-447 documents, plus a great deal more. Major motion and I/O capabilities that
Aerotech has added to the Recommended Standards include:

• Simultaneous contoured moves along a circular arc and circular or linear
paths.

• Coordinate system rotation and mirroring.

• Up to sixteen spindles (4 per task).

• Analog I/O.

• Simultaneous rotational and linear movement.

• Cutter Compensation.

• Normalcy.

In addition to new motion capabilities, the U600 CNC has added significant program
control related features:

• User defined G-codes or M-codes.

• Simultaneous execution of up to four CNC programs.

• Multiple program storage capability.

• Automatic program compilation, and dependency detection.

• Block “if-endif” type constructs.

• Subroutines with parameters, returns and stack capabilities.

1.7. Syntactic Descriptions

The syntactic description is especially important in a language as diverse as the U600
CNC. If there were only a few options for constructing a language element, then the
explanation text could describe these syntax options. However, since the U600 CNC
language’s flexibility and power allow the programmer to express language elements in so
many different forms, it makes it incredibly tedious to describe all the syntax options in
the text. The syntactic description language described in the next section permits us to
provide a necessary and sufficient description of all valid syntax options in a concise
fashion (usually one line). However, the examples and explanation text do emphasize and
clarify the most important and least obvious features of the syntax.

Each language object description always consists of three parts, presented in the order
shown below:

1. “Syntactic description(s)”
2. Explanation text
3. Example(s)

The format of the presentation of these sections is shown on the next page.

U600 CNC Programming Manual Introduction and Overview

Version 1.1 Aerotech, Inc. 1-5

A syntax description follows on the same line as the SYNTAX: text, and in some cases
occupies more than one line. A section may contain multiple syntax descriptions. The
ellipses (…) between the syntax and examples represent the explanation text; sometimes
presented in multiple paragraphs. Each example occupies its own line, and there may be
multiple examples. Inline comments often accompany examples.

The semantics or meaning of a language element is in the explanation text and comments
attached to the examples. The explanation and the examples also provide some
information relating to the syntax (the format) of the language element, but only the
“Syntactic description” provides a concise and complete expression of the required
syntax.

1.7.1. Elements of the Syntactic Description

The three elements of the syntactic description language are names, keywords, and
specifiers. Names refer to a syntactic object and keywords are alphanumeric text that
must be typed exactly as shown. Specifiers provide additional information on how
keywords and names can be combined.

Table 1-2 specifies all the elements of the syntactic description language along with
examples of their use.

Notice the use of italics, bold, underlining and subscripts (subscripts) to differentiate the
various elements.

Please refer to the examples in the following sections for more clarification on the
meaning of various elements.

SYNTAX:

...

EXAMPLES:

....

SEE ALSO:

...

Introduction and Overview U600 CNC Programming Manual

1-6 Aerotech, Inc. Version 1.1

Table 1-2. Syntactic Description Language Components

Element Example Meaning

Name <fConst> Names a basic syntactic element in the language (see Chapter 3).

Keyword $GLOB Must be typed exactly as shown; not case sensitive.

is <dog> is SPOT Specifies that a definition of a name follows on the same line.

or <dog> or <cat> This specifies an alternative between two choices.

except <digit> except 0 Sometimes certain forms must be excluded from the general case.

[] [[option]] The object between the double brackets is optional.

1 <digit>1 The preceding object can be repeated one or more times.

0 <space>0 The preceding object can be repeated zero or more times.

() PART(A or B) Sometimes parentheses are needed to indicate grouping. The
example shown is equivalent to: PARTA or PARTB.

~ ~ Indicates the optional use of white space.

... A or B or C ... Z In some cases ellipses will be used to abbreviate an obvious
progression.

1.7.2. Keyword Case Sensitivity

Keywords are alphanumeric text the user must type exactly as shown, except for case. The
user can enter the text in either upper or lowercase even though all keywords in this
manual are shown in uppercase.

However, text in a keyword can never consist of mixed case characters. For example,
“MAP” and “map” are legal and equivalent keywords, but “Map” and “mAp” are not
keywords.

Parameters, however, have a defined case, as shown in AerParam.Pgm. Axis parameters
are always entirely uppercase. Global, task, and machine parameters have mixed case
with the first letter of each word within the parameter capitalized, i.e. CntsPerInch.

1.7.3. White space

White space is defined as any non-zero number of consecutive spaces, tabs, commas,
backspaces, or deletes (ASCII codes 32, 9, 44, 8 and 127, respectively). The contents of
white space is always ignored in the U600 language. In other words, all forms of white
space are syntactically and semantically equivalent.

White space is sometimes required in the U600 CNC language and is sometimes optional.
Spaces within a syntactic definition mean that some white space is required. A “~” in a
syntactic description means that white space is optional. In general, white space is
required in Compiler Directive and Extended commands, but optional in G-code
commands.

U600 CNC Programming Manual Introduction and Overview

Version 1.1 Aerotech, Inc. 1-7

The example that follows illustrates how the MAP command must be separated from its
parameter (an axis point) by white space. Therefore, “MAPX4” is illegal, while “MAP
X4” and “MAP,,X4” are legal and equivalent. The second example illustrates that the
white space is optional in a “G0”, so “G0 X4” and “G0X4” and “G0,,X4” are all legal
and equivalent.

<mapCommand> is MAP <axispoint>

<g0Command> is G0~<axispoint>

However, spaces appearing in a syntactic definition on either side of a textual separator
(an is or or) are purely for readability and not part of the definition syntax. For example,
the spaces separating the “is” from the “MAP” above are not relevant.

1.7.4. Syntax Description Examples

Here are some examples of syntactic language definitions along with text describing the
meaning.

SYNTAX: <fValue> is <fConstant> or <fVariable>

 <fVariable> is $GLOB <integer>

This first example defines a “fValue” object as being a “fConstant” or a “fVariable”
object. The second example defines a “fVariable” as the letters “$GLOB” followed by an
integer.

Most syntax definitions rely on other syntactic definitions. For example, the
<integer> and <fConstant> elements used in the above definitions must be defined
elsewhere in order for the above definitions to be complete. The index and table of
contents can be used to quickly locate syntax definitions that are not immediately
visible.

A more complex example shown below defines a floating-point constant.

SYNTAX: <fConstant> is [[- or +]](<digit>1.<digit>0 or <digit>0.<digit>1))

The above syntax description describes the syntax for real numbers like -.8 or 5. or 6.9.
It’s probably the most complicated syntax description in this manual.

1.7.5. Limitations and Bounds

A conscious effort was made to avoid all bounds and limits when constructing the
compiler by taking advantage of dynamic allocation. Of course, the available memory of
the system is always a limitation, but for the purposes of this discussion that is ignored.

For example, there is no limit to the number of lines in a program or number of letters in a
variable or label. Also, there are no limits to program depth, WHILE or SUBROUTINE
block nesting, or INCLUDE file nesting.

However, there are some cases where limitations were forced by the motion controller or
general programming considerations. For example, the motion controller dictates that

Introduction and Overview U600 CNC Programming Manual

1-8 Aerotech, Inc. Version 1.1

“string32” type constants cannot be more than 32 characters long. Another example is that
the length of the line is limited to 1028 characters.

If no limitation or bound is included in a description, then it is inferred that no such
limitation exists. If a limit does exist, it will be defined in the documentation.

∇ ∇ ∇

U600 CNC Programming Manual Commands

Version 1.1 Aerotech, Inc. 2-1

CHAPTER 2: COMMANDS

In This Section: Page
 • Description ... 2-1
 • Programs .. 2-2

2.1. Description

This chapter introduces the Aerotech U600 Series CNC language commands, and the
general rules on how commands are constructed. The information contained in this
chapter is relevant to all U600 Series CNC commands. Information specific to any of the
three command sets is found in Chapters 4, 5 and 6.

2.1.1. Command Sets

The U600 Series CNC Programming language syntax really consists of three language
syntax joined together.

1. A “Compiler Directive” command set (based on ANSI C syntax)
2. A “G-code” command set (based on RS-274D syntax)
3. An “Extended” command set (based on RS-447 syntax)

Any Aerotech CNC line may be written in any of the three syntax, but syntax cannot be
mixed on the same line. For example “G91” is a legitimate G-code command, and
“MAP X1” is a legitimate extended command, but “G91 MAP X1” is not a legitimate
U600 CNC command.

To users familiar with CNC code, the term G-code used in this document refers to more
than just CNC words starting with a “G” (such as G90). The term G-code includes all the
syntax defined in RS-274D that includes G-codes, M-codes, F-codes, etc. For example,
the line N07 G2 X5 Y6 I5 J7 F30 is legal G-code syntax.

2.1.2. Conformance to Standards

The “Compiler Directive” syntax is loosely based on a subset of the ANSI C standard
Compiler Directive language, but no guarantee is given of its compatibility to the ANSI C
or any other standard.

The G-code and extended syntax were designed to follow the RS-274D and RS-447
standards. However, in some cases the Aerotech U600 syntax may vary slightly from the
described standards. These differences are usually trivial and were adopted to add extra
flexibility and power. For example, the RS-447 standard requires that any extended CNC
command must be surrounded by parentheses, but in Aerotech’s language the user can
optionally omit these parentheses.

Commands U600 CNC Programming Manual

2-2 Aerotech, Inc. Version 1.1

2.2. Programs

This section contains the first usage of the syntactical description language. For notes on
how to interpret the Syntactic Description Language, reference Chapter 3 within this
manual.

SYNTAX: <CNCProgram> is ([[<CNCLine>]]~[[<Comment>]]~<lineTerminator>)0

The above description states that a CNC program consists of a series of CNC lines and/or
comments.

Terminate each line with a line terminator.

The comment, line, and terminator may be separated by white space.

2.2.1. White space

The “~” character in the syntactic description language indicates that white space may be
included (refer to Table 1-2 in Chapter 1). White space is defined as any non-zero number
of consecutive spaces, tabs, backspaces or deletes (ASCII codes 32, 9, 44, 8 and 127,
respectively). The content of white space is always ignored; in other words, all forms of
white space are syntactically and semantically equivalent.

2.2.2. Line Terminators

SYNTAX : <lineTerminator> is CRLF

A line terminator is the pair of characters, carriage return and linefeed. These are ASCII
codes 13 and 10, respectively, and cannot be separated by white space.

2.2.3. Characters
SYNTAX : <ASCIIcharacter> is ASCII codes: (0 or 1 or ... or 127)

<printableCharacter> is ASCII codes: (32 or 33 or ... or 126)

<digit> is 0 or 1 or 2 ... or 9

<letter> is A or B ... or Z

<underscore> is _

<period> is .

<space> is ASCII code 32 or ASCII code 9 (TAB)

<alphanumeric> is (<digit> or <letter> or <underscore>)1

Some simple definitions of character types are necessary before proceeding. This chapter
and the following chapters contain those definitions.

In general, program text can be any series of printable characters. The ASCII characters
outside of the printable range contained in a valid CNC line are backspace, tab, carriage
return, line feed and delete (ASCII codes 8, 9, 13, 10 and 127, respectively). These non-
printable characters are used as white space and line terminator characters (see Sections
2.2.1. and 2.2.2).

U600 CNC Programming Manual Commands

Version 1.1 Aerotech, Inc. 2-3

2.2.4. Comments

SYNTAX: <comment> is ;<ASCIIcharacter>1 <lineTerminator>

The semicolon character “;” is the start of a comment. The compiler ignores all text
following this character (on the same line) when executing the program. The line
terminator terminates this comment. There is no multi-line comment operator in the CNC
language; each comment line must begin with a semicolon.

2.2.5. Lines

SYNTAX: <CNCLine> is ~(<CompilerDirectiveLine> or <GCodeLine> or <ExtendedLine>)

The above description states that any CNC line can be in one of the three syntax, but not a
combination of all three.

Also, any of the three types of lines may be preceded by white space.

A line should not be more than 1028 characters. If a line is too long, the compiler returns
an error. However, in some cases the compiler accepts a line that is between 1028 and
2056 characters long. Nevertheless, to guarantee acceptance of a line, it should be less
than 1028 characters.

If a preprocessor line exceeds the line length limit (usually in the context of a user defined
M-code), then the programmer can break the line into multiple lines with the “\”
preprocessor command character.

2.2.6. Block Delete

The “/” character, if it is the first non-white-space character on the line, is the block delete
character. Block delete permits omission of certain program lines during program
execution. When the block delete setting is on, all lines prefixed by the “/” character will
be treated as comments (not executed). When the block delete setting is off, lines
designated as block delete lines are treated no differently than normal lines.

The block delete feature cannot be used for compiler directives.

∇ ∇ ∇

Commands U600 CNC Programming Manual

2-4 Aerotech, Inc. Version 1.1

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-1

CHAPTER 3: EXPRESSIONS

In This Section: Page
• Description .. 3-1
• Expressions ... 3-1
• CNC and Axis Letters ... 3-3
• CNC Masks ... 3-4
• CNC Words... 3-4
• CNC Block Expressions.. 3-5
• Floating-Point Expressions.. 3-7
• Integer Expressions ... 3-12
• String 32 Expressions.. 3-14
• Labels .. 3-15
• Variants ... 3-16

3.1. Description

This chapter describes the syntax for expressions in the UNIDEX 600 Series CNC
language. Expressions are used as arguments to both G-code and Extended commands,
but cannot be used in Compiler Directive commands.

This chapter also describes the use of all symbols (non-alphabetic character strings)
except for those few covered in Chapter 1 and Chapter 2 (such as the comment character)
pertaining to Compile Directive Commands. This includes the assignment operator,
comparators, and all arithmetic operators. It also describes the use of all constants, and all
variant quantities (variables, parameters, and I/O elements).

This chapter contains exhaustive descriptions, so it may be tedious to read through as a
tutorial. We recommend that the user find the commands they want to use in Chapter 5
and Chapter 6, and reference back to here for definitions of the expressions used by that
command.

3.2. Expressions

This section defines what an expression is, while simultaneously defining the terms used
in the remainder of this chapter.

3.2.1. Expression Elements

SYNTAX: <expression> is <element><element><element>...

EXAMPLE: 8*(6+$GLOB0) ; elements are: 8,*,and (6+$GLOB0),
; where (6+$GLOB) is in itself an expression

Expressions are composed of a series of expression elements. Expression elements are the
basic building blocks of the UNIDEX 600 Series CNC command line. The most familiar
form of an expression is a mathematical operation, like the example above.

Expressions U600 CNC Programming Manual

3-2 Aerotech, Inc. Version 1.1

Elements of an expression can be expressions themselves.

Expression elements are classified in two ways: by “type” or by “component.” Together
these classifications describe what the element is and its use.

3.2.2. Expression Types

SYNTAX: <expression> is <CNCLetter> or <CNCMask> or <CNCWord> or <CNCBlock>

 <fExpression> or <integer> or <s32Expression> or <label> or

 <conditionalExpression>

EXAMPLE: 8*(6+$GLOB0)

Expression types describe what is stored in the expression element.

The example illustrates a <fExpression> type expression. All of the objects on the left
side of the “is” are different types of expressions.

When the CNC line containing an expression executes, its elements are combined,
evaluated, or reduced by the compiler and/or controller into a single element of constant
type. In order for that reduction to take place, an expression must be composed of
elements of the same type. For example, an expression cannot contain a floating point
element and CNC mask element.

3.2.3. Expression Components

SYNTAX: <expression> is <constant> or <variant> or <operator> or <function>

 <variant> is <variable> or <parameter> or <I/O>

Expression components describe how the expression is stored and manipulated.

For example, the floating point expression “7 +9” consists of two floating-point constants
and a floating-point operator.

Variants is the name used to describe the collection of objects whose contents can change
during program execution. Variant values may change because the programmer changes
them (e.g., variables) or because the controller changes them (e.g., the CLOCK
parameter). Variants include all variables, parameters, and I/O elements. For more details
on variants, see Section 3.11.

3.2.4. Expression Examples

Each expression has a specific “type” and a specific “component.” Table 3-1 illustrates
examples of each component of each expression type. This chart is not comprehensive,
since a number of variant components are not listed here (for more details on variants, see
Section 3.11).

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-3

All expression types have a constant form, but many types only have the constant
form available.

Table 3-1. Expression Examples

Component

Constants Variants Operators Functions

Type global var. global parm. I/O

CNCLetter X

CNCMask X Y

CNCWord X5.2

CNCBlock X5 Y1.7 $APTGLOB1

Float 6.7 $GLOB1 $PGLOB1 ... � SQRT

Integer 6 $BI2

Labels startHere

String32 “string” $STRGLOB1 � ...

3.3. CNC and Axis Letters

SYNTAX: <commandLetter> is [[G or M or g or m]]

 <argLetter> is [[O or P or Q or R or o or p or q or r]]

 <taskLetter> is [[F or E or S or I or J or K or T or
 f or e or s or i or j or k or t]]

 <axisLetter> is [[X or Y or Z or U or A or B or C or D
or x or y or z or u or a or b or c or d]]

EXAMPLE: X

This expression type is a set of reserved letters. There are no variants, operators, or
functions available for this expression type, only constants. Normally, the case of the
letter is unimportant; lowercase and uppercase receive identical treatment. The exception
to this rule applies to the axis letters; each case of a letter specifies a different axis.

An axis letter indicates a particular axis. Since there are 16 axes on the UNIDEX 600
Series controller, there are sixteen axis letters available: X, Y, Z, U, A, B, C, D, x, y, z, u,
a, b, c, d. By default, these axis letters are associated with channels 1 through 16,
respectively, although the MAP extended command can easily change this mapping.

Expressions U600 CNC Programming Manual

3-4 Aerotech, Inc. Version 1.1

The lower and uppercase letters indicate different axes. For example, C is axis 7 and
c is axis 15, and neither one is related to the other.

CNC letters, rarely used by themselves, are important only as parts of CNC words and
CNC masks. The exception to this is the asynchronous motion commands that take axis
letters as arguments.

The programmer should be aware that they can use longer names in place of axis letters to
represent axes. Refer to the “#axisnames” documentation in Chapter 4 for instructions.

3.4. CNC Masks (Axis Masks)

SYNTAX: <CNCMask> is <axisLetter>1

EXAMPLE: X Y Z

CNC Masks (Axis Masks) specify one or more axes. There are no CNC Mask variants,
operators, or functions for this expression type, only constants are available.

CNC masks consist of a series of one or more axis letters, where each letter must be
separated by white space, i.e.; X Y Z is legal, as is X, Y, Z, but XYZ is not legal. Axes
masks are only used in the axis contention (e.g., FREE, BIND) and asynchronous motion
(e.g., INDEX, STRM) extended commands and in the MASKTODBL command.

3.5. CNC Words

SYNTAX: <axisWord> is <axisLetter>~<fExpression>

EXAMPLE: X5.5

SYNTAX: <commandWord> is <commandLetter>~<integer>

EXAMPLE: G2

SYNTAX: <taskWord> is <taskLetter>~<fExpression>

EXAMPLE: F100

SYNTAX: <argumentWord> is (<axisLetter> or <argLetter>)~<fExpression>

EXAMPLE: p9.9

CNC words are the foundation of all G-code commands and expressions; also used in
some extended commands as Axis Points and Argument Points. There are four types of
CNC words shown above.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-5

Each CNC word consists of two parts: a “letter” followed by an “expression.” These two
parts are optionally separated by white space. There are various restrictions on both parts,
depending on the type of CNC word, see the syntax above, and notes below.

 The Axis Word accepts axis names in the “expression.” These can be more than one
letter, please see the #axisnames statement.

The Command Word accepts only integer constants in the “expression.”

The argument word is slightly different in syntax than the others, because it can use
either argument letters or axis letters. In other words, axis letters do double duty,
serving in two different capacities depending on the context.

 The Argument Word accepts parameter names in the “expression.” These can be
more than one letter, please see the #parmnames statement.

3.6. CNC Block Expressions

SYNTAX: <CNCBlock> is <CNCBlockConstant> or <APTVariable>

CNC blocks are either constants or variables. There are no operators or functions
available.

3.6.1. CNC Block Constants

SYNTAX: <CNCBlockConstant> is (<CNCWord>)1

<CNCBlockConstant> is <GCodeBlock> or <axisPoint>or <argumentList>

EXAMPLE: X5 Y$GLOB6 Z5.5

CNC expressions are a collection of one or more CNC words, optionally separated by
white space. However, there are many types of CNC block constants (see descriptions in
the following sections).

Expressions U600 CNC Programming Manual

3-6 Aerotech, Inc. Version 1.1

3.6.1.1. CNC G-code Blocks

SYNTAX: <GCodeBlock> is (<commandWord> or <axisPoint> or <taskWord>~)1

EXAMPLE: X5 Y$GLOB6 Z5.5

G-code blocks are used exclusively in G-code commands. The syntax shown above is a
general description and is not very useful. There are many other restrictions on the order
of the words within a G-code block. Refer to Chapter 5: G-codes, for more details on
G-code block syntax and meaning.

3.6.1.2. Axis Points

SYNTAX: <axisPoint> is (<axisWord>~) or <APTVariable>
except : may not contain more than one word that uses the same CNC letter

EXAMPLE: X5 ; a constant axis point

X5 Y6 ; a constant axis point

X5 Y=6 ; a constant axis point

X($GLOB5) Y6 ; a constant axis point, with a variable value for X

X5 Y$GLOB6 Z5.5 ; a constant axis point, with a variable value for Y

$APTGLOB7 ; an axis point variable

A CNC axis point is a specific type of CNC block that specifies a point, plane, or position
in space, where the space spans the axes in the system. If it is a constant, it is a series of
CNC words, any of which can be separated by white space, or not separated at all.

For example, in a three-axis system, “X0.0,Y0.0,Z0.0” represents the origin point in the
coordinate system whose axes are X, Y and Z.

In G-code commands, the CNC Axis Point specifies a point in space to move to. They are
also used in MAP extended commands.

3.6.1.3. Argument Lists

SYNTAX: <argumentList> is (<argumentWord>~)1

except : may not contain more than one word that uses the same CNC letter

EXAMPLE: P5 Y$GLOB6 q5.5

A CNC argument list specifies a set of arguments to pass to a subroutine or program. See
the CALL extended command for more details on program and subroutine calling.

There are twenty arguments that may be passed, including the 16 axis names (X, Y, Z, U,
A, B, C, D, x, y, z, u, a, b, c, d), and O, P, Q and R. The O, P, Q, R arguments have no
corresponding lowercase argument, so they are case insensitive, allowing o, p, q and r to
be used interchangeably. These parameter names may be re-assigned.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-7

3.6.2. APT Variables

APT Variables are variants that can hold either Axis Points or argument lists. An axis
point variable is actually an array that contains one value for each axis. This allows each
of the axis point variables to maintain the coordinates for a 16 dimensional point in space.
See Section 3.11 for examples of use and details on variable scope, initialization, and
usage.

EXAMPLES:

$APTGLOB0 = X5 Y7 Z2

G1 $APTGLOB0

3.7. Floating-Point Expressions

SYNTAX: <fExpression> is [[(]] <fConstant> or <fVariant> or <fOperatorExpression>

or <fFunctionExpression> or <iExpression> [[)]]

EXAMPLE: 8*($GLOB7+$GLOB[9+2])

Floating-point expressions do the bulk of the work in calculations. Simply put, they are
arithmetic combinations of constants and variants. Constants, variants, operators, and
functions are all available for the floating-point type (see Table 3-2). However, to
properly construct floating-point expressions from operators and functions, the
programmer must understand the precedence rules described in Section 3.7.5.

3.7.1. Floating-Point Constants

SYNTAX: <fConstant> is [[- or +]](<digit>1.<digit>0 or <digit>0.<digit>1)) or <integer>

EXAMPLE: 8.9982

A floating-point constant is a signed decimal value.

The user cannot express a floating-point constant in scientific notation.

There can be no white space within the constant.

Any integer constant is also a valid floating-point constant.

There is no limit to the number of digits in a floating-point constant, but there is limited
precision beyond which truncation of digits occurs. The UNIDEX 600 Series motion
controller supports an 8 byte (64 bit) value, where floating point values are stored as 52
bit binary numbers (15 decimal digits), with the remaining 11 bits used to store the
mantissa. In other words, the value “123456789.012345” is recognized as a different
value compared with the value “123456789.012344”, but is not recognized any different
than the value “123456789.0123451”.

Expressions U600 CNC Programming Manual

3-8 Aerotech, Inc. Version 1.1

Also, there is a limit to the range of entering a floating-point constant. The maximum
absolute value allowed is 1.7 E308; the minimum absolute value is 1.7 E-308. If a
constant is defined outside this range, the compiler delivers a warning message and the
value is set to the appropriate limit.

3.7.2. Floating Point Variables

Please see Section 3.11 for examples of use and details on variable scope, initialization,
and usage.

3.7.3. Floating Point Operators

SYNTAX: <fOperatorExpression> is <fOperator>~<fExpression> or
<fExpression>~<fOperator>~<fExpression>

EXAMPLE: 6+9.9

 The floating-point expressions in Operator Expressions are called arguments. Operators
are either unary (require one argument) or binary (require two arguments). The unary
operators follow the syntax defined on the first syntax line definition above, the binary
operators follow the syntax definition defined on the second line, above. The precision of
the floating-point operators may be limited via the NumDecimalsCompare task parameter.

SYNTAX: <Foperator> is � or � or * or � or % or **

or OR or AND or NOT

or __ or 		 or �

or EQ or NE or GT or LT or GE or LE

or == or != or > or < or >= or <=

EXAMPLE: GT

The first line of operators in the floating-point operator syntax definition above is just the
standard mathematical operations available on a calculator. The second line comprises
logical operators, whose result is always 0.0 or 1.0. The third line is the ANSI C
equivalents to the verbal form lying directly above it on the second line. For example, “||”
is equivalent to “OR”.

The fourth line of operators shown are comparators. Normally these are used only in an
“IF” statement or other conditional statement, although they can be used anywhere other
floating-point operators are used. These operators evaluate to one if the condition is true,
and evaluate to zero if the condition is false. For example, “$GLOBAL0=3 EQ 9” would
assign zero to global variable 0.

The fifth and last line in the syntax description is the ANSI equivalent form of the verbal
comparators directly above them in the fourth line. For example “==“ is equivalent to
“EQ”.

All the symbolic forms shown in the syntax description above (lines one, three and five)
are compatible with ANSI C or C++.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-9

The operator expression is evaluated, or converted into, a floating-point constant when
the controller executes the line containing that operator expression.

In some cases certain arguments are illegal, like division by zero (refer to Table 3-2). If
an illegal argument is a constant, the compiler generates an error. However, if the
argument is not a constant and is evaluated to an illegal argument when the line executes,
the motion controller generates an appropriate fault when that line executes.

Table 3-2 shows the operators, their result, and any restrictions on their input arguments.
The symbol α denotes the first argument and the symbol β denotes the second argument,
if any.

Table 3-2. Summary of Floating-Point Operators Available (Where α and β are Arguments)

Operator Args Restrictions Description of Result

+ 2 ... α plus β

- 2 ... α minus β

* 2 ... product of α and β

/ 2 β != 0 α divided by β

% 2 β != 0 α mod β (remainder of integer division)

** 2 not: α<0, β not integer α raised to the β power

OR 2 ... Logical or of α and β (1.0 if either α != 0 orβ != 0)

AND 2 ... Logical and of α and β (1.0 if both α and β !=0)

NOT 1 ... 1.0 if α is zero, 0.0 otherwise

EQ 2 1 when α equals β, otherwise 0

NE 2 1 when α not equal to β, otherwise 0

GT 2 1 when α greater than β, otherwise 0

LT 2 1 when α less than β, otherwise 0

GE 2 1 when α greater than or equal to β, otherwise 0

LE 2 1 when α less than or equal to β, otherwise 0

3.7.4. Floating Point Functions

SYNTAX: <fFunctionExpression> is <fFunction> (<fExpression>) <fFunction>

 is INT or ABS or SQRT or FRAC or EXP or SIN or

COS or TAN or ASIN or ACOS or ATAN

EXAMPLE: SQRT(6.7)

Floating-point functions are unary, where they take only one expression (called an
argument) within parentheses. The function is evaluated or converted into a floating-point
constant when the axis processor card executes the line containing that function.

Expressions U600 CNC Programming Manual

3-10 Aerotech, Inc. Version 1.1

In some cases certain arguments are illegal, like the square root of a negative number
(refer to Table 3-3). If an illegal argument is a constant, then the compiler delivers an
error. However, if the argument is not a constant and is evaluated to an illegal argument
when the line executes, the motion controller generates an appropriate fault when that line
executes.

Table 3-3 shows the functions, their result, and any restrictions on their input arguments.
The symbol α denotes the single argument.

Table 3-3. Summary of Floating-Point Functions Available (Where α is the Argument)

Function Restrictions Description of Result

ABS ... Absolute value of α
FRAC ... Fractional part (subtracts the integer portion) of α
EXP ... e to the power of α
INT ... Integer value (truncation of fraction) of α
SQRT α >= 0 Square root of α
SIN α in RADIANS Trigonometric sine of α
COS α in RADIANS Trigonometric cosine of α

TAN α in RADIANS Trigonometric tangent of α
ASIN -1 <= α <= 1 Trigonometric inverse sign of α (result in RADIANS)

ACOS -1 <= α <= 1 Trigonometric inverse cosine of α (result in RADIANS)

ATAN ... Trigonometric inverse tangent of α (result in RADIANS)

The FRAC and INT functions truncate the fractional and integer portions of the input
expression, regardless of the sign. In other words, α = INT(α) + FRAC(α), for all values
of α.

3.7.5. Floating Point Computation Precedence

If a floating point expression contains a succession of more than one binary operator or
binary function, then it is not obvious what order the functions or operators are to be
executed. For example, in the expression “6 + 8 % 3", it is not obvious which
computation is first; the addition or the modulus. The UNIDEX 600 Series controller
CNC language uses the conventional precedence order of conventions during evaluation,
briefly summarized below.

1. An expression in parentheses is evaluated by itself until everything within
those parentheses fully reduces to a single constant.

2. All functions have precedence over operators.
3. All unary operators have precedence over binary operators.
4. When an operand is compressed between two binary operators, the

operator with the higher precedence index computes first. However, if the
operators are of the same precedence index, then the left operator is
computed first.

Table 3-4 shows the operator precedence indexes.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-11

Table 3-4. Operator Precedence Indexes

Binary Operator Precedence

== 1 (lowest)

!= 1 (lowest)

< 1 (lowest)

> 1 (lowest)

<= 1 (lowest)

>= 1 (lowest)

+ (as in 8+8) 2

- (as in 8-8) 2

* 3

/ 3

% 3

** 4

OR 2

AND 3

NOT 4

+ (as in +8) 5 (highest)

- (as in -8) 5 (highest)

EXAMPLES:

$GLOB0 = 2 + 3 * 4 ; this is 14

$GLOB0 = (2 + 3) * 4 ; this is 20

$GLOB0 = -3**2 ; this is 9

Expressions U600 CNC Programming Manual

3-12 Aerotech, Inc. Version 1.1

3.8. Integer Expressions

SYNTAX: <iExpression> is <integer> or <iOperatorExpression> or <fExpression>
except : the fExpression must evaluate to an integral value (that is FRAC(fExpression) = 0.0)

EXAMPLE: 6+8**9

Integer expressions are a subset of floating point expressions; used only in situations
where a decimal value would be irrational or illegal.

3.8.1. Integer Constants

SYNTAX: <integer> is [[- or +]]<digit>1

EXAMPLE: 62

0h3E ; 0h3E (Hex) = 62 decimal

0H3E ; 0h3E (Hex) = 62 decimal

An integer constant is a signed integer value. There can be no white space within the
constant.

There is no limit to the number of digits in an integer, but there is a limited precision beyond
which truncation of values occurs. The UNIDEX 600 Series motion controller supports a 4-
byte (32-bit) value, where the values may range from +2,147,483,648 to –2,147,483,648. If
a constant is entered outside this range, then the compiler delivers a warning message and
the value is set to the appropriate limit.

3.8.1.1. Hexadecimal Numbers

Syntax: 0H<hexadecimal digit>1

Example: 0Habsdef

0habsdef

Hexadecimal numbers may be expressed by entering them with a leading 0H (zero H) before
the hexadecimal number. For example, 0Habcdef is a valid number in hexadecimal format.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-13

3.8.2. Integer Operators

SYNTAX: <iOperatorExpression> is <iExpression>~<fOperator>~<iExpression>

 <iOperator> is BOR or BAND or BNOT or BXOR
or BNAND or BNOR or _ or &
or a or ^ or !! or ��

EXAMPLE: 62 >> 2

These are bitwise operators that work much like floating point binary operators. The
operator expression is evaluated or converted into an integer constant when the controller
executes the line containing that operator expression. Note that the arguments must be
integer values.

The second line of symbols above are the ANSI C equivalents to the verbal equivalent
directly above it. For example, “BOR” is equivalent to “|” (note that there are no
equivalent verbal forms for the bit shift operators). Therefore, these operators (not the
verbal forms) are fully compatible with ANSI C.

In some cases certain arguments are illegal. If an illegal argument is a constant, then the
compiler delivers an error. However, if the argument is not a constant and is evaluated to
an illegal argument when the line executes, the motion controller generates an appropriate
fault while attempting to execute that line.

Table 3-5 shows the operators, their result, and any restrictions on their input arguments.
The symbol α denotes the first argument and the symbol β denotes the second argument,
if any.

Table 3-5. Summary of Integer Operators Available (Where α and β are Arguments)

Operator Restrictions Description of result

BOR ... Bitwise or of α and β

BAND ... Bitwise and of α and β

BNOT ... Bitwise not (inversion) of α

BXOR ... Bitwise exclusive or of α and β

BNAND … Logical NOT of a bitwise AND of α and β

BNOR … Logical NOT of a bitwise OR of α and β

<< β >=0 Left shift α by β bits

>> β >=0 Right shift α by β bits

The bitwise operators perform 32 independent operations, one on each corresponding pair
of bits in the arguments. Table 3-6 summarizes the results of three common bit
operations.

Expressions U600 CNC Programming Manual

3-14 Aerotech, Inc. Version 1.1

Table 3-6. Summary of Bitwise Operations

α Argument β Argument OR AND XOR BNAND BNOR

0 0 0 0 0 1 1

0 1 1 0 1 1 0

1 0 1 0 1 1 1

1 1 1 1 0 0 0

The examples below show legal syntax using the above operators, (0h prefixes a
hexadecimal constant) and summarize their results in binary: (the comment following the
code shows the binary description of the operation).

EXAMPLE:

Hexadecimal Expression Binary Expression Result

0hC BOR 0hA = 1100 BOR 1010 = 1110 (0hE)

0hC BAND 0hA = 1100 BAND 1010 = 1000 (0h8)

BNOT 0hA = BNOT 1010 = 0101 (0h5)

0hC BXOR 0hA = 1100 BXOR 1010 = 0110 (0h6)

0hC << 1 = LEFT SHIFT 01100 = 11000 (0h18)

0hC << 1 = RIGHT SHIFT 01100 = 00110 (0h6)

Note, that the BNAND and BNOR operators are combinations of logical and binary
operators, for example:

BNAND $glob0 is equivalent to NOT (BAND ($glob0))

BNOR $glob0 is equivalent to NOT (BOR ($glob0))

3.9. String 32 Expressions

SYNTAX:

<s32Expression> is <s32Constant> or <s32Variable> or <s32OperatorExpression>

String 32 expressions are strings whose maximum length are 32 characters. Constants,
variants, and operators are all available for this type (see Table 3-1).

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-15

3.9.1. String32 Constants

SYNTAX: <sCharacter> is <printableCharacter> or <space> or <CR> or <LF>
except ´

 except ¶
except �

<s32Const> is <sCharacter>1

String32 constants may contain up to 32 characters and nearly every type of printable
character, plus spaces, carriage returns, and line feeds.

EXAMPLE: “this is a string”

3.9.2. String32 Variables

See Section 3.11 for examples of use and details on variable scope, initialization, and
usage.

3.9.3. String 32 Operators

SYNTAX: <s32OperatorExpression> is <s32Expression>~�~<s32Expression>

The only string operator available is the concatenation operator, specified as the plus
operator.

The user can use string constants and string variables interchangeably.

EXAMPLE: $STRGLOB1 = “this”+“is”+“one” + $STRGLOB0 + “string”

3.10. Labels

SYNTAX: :<label> is <letter><letter>(<alphanumeric> or <period>)1

EXAMPLE: :jumpToHere

Labels specify program locations. They must be at least three characters long and the first
two characters must be letters. Underscores are legal after the second character.

Labels are used in GOTO, DFS, FARJUMP, CLS, and FARCALL extended
commands.

Expressions U600 CNC Programming Manual

3-16 Aerotech, Inc. Version 1.1

3.11. Variants

Variants describe the collection of objects whose value may change during program
execution. Variant values may change because the programmer changes them (i.e.,
variables) or because the controller changes them (i.e., the CLOCK parameter). Variants
consist of variables, parameters, I/O elements, and call arguments.

The $ symbol must precede all variant names, except for program variable aliases
(see section 3.11.5.1).

3.11.1. Variant Types

SYNTAX: <variant> is <fVariant> or <s32Variant> or <APTVariant> or <integer> or
<parameterVariant>

As discussed in Section 3.2.2., there are a number of expression types. However, in Table
3-7, only three of the expression types have variants available.

3.11.2. Variant Names

See Table 3-7 for a list of all variant names available and their expression type.

Most expression types do not have variant forms available.

The program variable does not have an explicit variant name; instead it is the
expression element <pvName>. This is because the programmer assigns a name to
program variables (see subsection 3.11.6).

It is important to add that the \U600\Programs\AerParam.Pgm include file provides more
descriptive and easier to use forms of the parameter variants than those in Table 3-7.
These forms are called “aliases” and Aerotech recommends using them instead of the
parameter forms listed in Table 3-7. See Section 3.11.5 for more details on aliases.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-17

Table 3-7. Variant Names

Variant Type

Variables CNCLetter CNCMask CNCWord CNCBlock Float Integer Labels String32

Global APTGLOB GLOB STRGLOB

Task APTTASK TASK STRTASK

Program <pvName>

Parameters CNCLetter CNCMask CNCWord CNCBlock Float Integer Labels String32

Axis PAXIS

Task PTASK

Machine PMACH

Global PGLOB

I/O CNCLetter CNCMask CNCWord CNCBlock Float Integer Labels String32

Binary In BI

Binary Out BO

Register In RI

Register Out RO

Analog In AI

Call Arguments CNCLetter CNCMask CNCWord CNCBlock Float Integer Labels String32

Value <argLetter>

Existence <argLetter>
.DEFINED

...

3.11.3. Assignments to Variants

SYNTAX: <fAssignmentCommand> is <fVariant>~ ~<fExpression>

<s32AssignmentCommand> is <s32Variant>~ ~<s32Expression>

<APTAssignmentCommand> is <APTVariant>~ ~<APTExpression>

EXAMPLES: $GLOB7 = (6+$GLOB0*2)
$STRGLOB7 = “this is a string”+STRGLOB0
$APTGLOB7 = X9.9 Y7 Z($GLOB0)

The assignment commands assign values to variants. The variant and the expression must
be of the same type (i.e., floating point or string).

Certain variants are read only. All analog inputs, call argument existence variants, and
certain parameters are read only (see EDU157 UNIDEX 600 Series Users Guide, under
Parameters, to see which parameters are read only). If the user tries assigning values to

Expressions U600 CNC Programming Manual

3-18 Aerotech, Inc. Version 1.1

any of the read only parameters, a compiler error occurs. If the user tries assigning values
to a read only parameter, the controller generates the appropriate fault.

3.11.4. Variables

SYNTAX: <variable> is<fVariable> or <s32Variable> or <APTVariable>

Variables are variants whose value is completely controlled by the user. Other than
system initialization, the assignment statement is the only way to change these values.

3.11.4.1. Global Variables

SYNTAX: <fGlobVariable> is $GLOB<integer> or $GLOB[~<fExpression>~]

 <fS32Variable> is $STRGLOB<integer> or $STRGLOB[~<fExpression>~]

 <fAPTVariable> is $APTGLOB<integer> or $APTGLOB[~<fExpression>~]

EXAMPLES: $GLOB4 = 5
$STRGLOB[4] = “dog”
$APTGLOB[4+9] = X4 Y6.8

Global variables have universal scope, meaning they are accessible from any program on
any task, and always refer to the same physical memory location.

The number of global variables available for use is defined by the NumGlobalDoubles,
NumGlobalStrings, and NumGlobalAxisPts global parameters. If the user increases these
numbers, then there is an allocation of new global variables.

The controller reset cycle initializes global floating-point variables. Initialized to zero are
the floating-point global variables. Initialized to “” or the null string are String32 global
variables. Finally, initialized to the NULL point are APT global variables.

The expression within the square brackets, if it exists, must be a non-negative integer. If it
is not a positive constant integer, then the compiler generates an error. If it is an
expression that does not reduce to a non-negative integer, then the controller generates a
fault when it tries to execute the line containing the variable.

Global variables should not be used as target positions or feedrates in a contoured
move, if the global variables are to be changed at other than at the program’s start,
while CNC block look-ahead is active. CNC block look-ahead does not track global
variables. Use program variables for this purpose.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-19

3.11.4.1.1. Saving Global Variables to a File

The following subroutine may be used in your CNC program to save the values of global
variables so that they may be quickly restored the next time the U600 MMI starts. The
values are restored by executing a CNC program which sets the values of the variables.

DVAR $var

DFS Save_Vars ; save global vars 0-113 to ini file

 $fHandle = FILEOPEN "Glob.Pgm", 0 ; over-write mode

 $var = 0

 REPEAT 114

FILEWRITE $fHandle, "$GLOB["$var "] = ", $GLOB[$var]

 $var = $var + 1

 ENDREPEAT

 FILEWRITE $fHandle, "RETURN" ; TERMINATE PROGRAM (FOR

; FARCALL)

 FILECLOSE $fHandle

ENDDFS

3.11.4.1.2. Restoring Global Variables from a File

The following CNC program lines will restore the values of global variables previously
written to a file. The variables values are restored by executing a CNC program which
sets the values of the variables.

PROGRAMDOWNLOADFILE "C:\U600\Programs\Glob.Pgm"

FARCALL "Glob.Pgm " ; init. global vars

PROGRAMUNLOAD "Glob.Pgm " ; clean up memory

Expressions U600 CNC Programming Manual

3-20 Aerotech, Inc. Version 1.1

3.11.4.2. Task Variables

SYNTAX:

<fTaskVariable> is $TASK<integer> or $TASK[~<fExpression>~]

<s32TaskVariable> is $STRTASK<integer>or $STRTASK[~<fExpression>~]

<APTTaskVariable> is $APTTASK<integer> or $APTTASK[~<fExpression>~]

EXAMPLES: $TASK4 = 5
$STRTASK[4] = “dog”
$APTTASK[4+9] = X4 Y6.8

Task variables have task scope, meaning they are accessible from any program running on
a given task. Task variables on different tasks are independent and have different values
for each task. However, the user can access and set task variables running on another task.

The number of task variables available for use is defined by the NumTaskDoubles,
NumTaskStrings, and NumTaskAxisPts task parameters. If the user increases these
numbers, then there is an allocation of new global variables.

The number of task variables available for use is defined by the NumTaskDoubles global
parameters. If the user increases these numbers, then there is an allocation of new global
variables.

The controller reset cycle initializes global floating-point variables. Initialized to zero are
the floating-point global variables. Initialized to “” or the null string are String32 global
variables. Finally, initialized to the NULL point are APT global variables.

The expression within the square brackets, if it exists, must be a non-negative integer. If it
is not a positive integer, then the compiler generates an error. If it is an expression that
does not reduce to a non-negative integer, then the controller generates a fault when it
tries to execute the line containing the variable.

Task variables should not be used as target positions or feedrates in a contoured
move, if the task variables are to be changed at other than at the program’s start,
while CNC block look-ahead is active. CNC block look-ahead does not track task
variables. Use program variables for this purpose.

3.11.4.3. Program Variables

SYNTAX: <pvName> is $<letter><letter><alphanumeric>1

EXAMPLES: $myVariable[9]
$myVariable[$GLOB0+6]

The first two characters in a program variable name must be letters. The remaining
characters can be letters, numbers or underscores. There must be at least three characters

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-21

in the name. In program variable names, like aliases, the case of the name is sensitive. For
example, “$myVariable” is a different variable than “$MYVARIABLE.”

Program variables have program scope, meaning they are accessible from only the
declaring program. They cannot be accessed from programs called by the declaring
program. Program variables declared in the same program that is running on two different
tasks, reference different variables. If a program calls itself, then the variables from the
two instances of the program are independent and separate.

The user must declare program variables in a program. All program variable declarations
must appear in the program before any non-declaration CNC lines. Program variables are
declared with the DVAR extended command.

Declaration of program variables initializes them to zero.

3.11.4.4. Program Array Variables

SYNTAX: <programArrayVar> is <pvName>~[~<fExpression>~]

EXAMPLES: $myVariable[9]
$myVariable[$GLOB0+6]

If the user uses an index expression with a program variable, then they are accessing an
array element. To define arrays, use the DVAR extended command. The user can access
any program variable with an index, even if it was not declared as an array, but the results
may be unexpected. See the DVAR command for details on program variable indexing.

The expression within the brackets must be a non-negative integer. If it is not a positive
constant integer, then the compiler generates an error. If it is an expression that does not
reduce to a non-negative integer, then the controller generates a fault when it tries to
execute the line containing the variable.

Expressions U600 CNC Programming Manual

3-22 Aerotech, Inc. Version 1.1

3.11.5. Parameters

SYNTAX: <parameter> is <axisParameter> or <taskParameter> or
<machineParameter> or <globalParameter>

Parameters are variants that directly affect the controller operation, or whose value is a
direct result of the controller operation. In general, the user or the controller can change
parameters. However, this depends on the specific parameter in question. Some
parameters are only accessible by the programmer, others only accessible by the
controller, and still others are accessible to both the programmer and the controller.

Virtually all controller activity is affected by parameters and an understanding of them is
absolutely necessary. A detailed description of all parameters is in the UNIDEX 600
Series Users Guide, P/N EDU157.

3.11.5.1. Aliases

All parameter names are “aliased” for convenience and these aliases are available by
including the standard include file \U600\Programs\AerParam.Pgm (see Chapter 4 for use
of the include command). For example, “$PAXIS[16]” can be alternately referred to as
“KI”. The file \U600\Programs\AerParam.Pgm is always automatically included in user
CNC programs by the program automation page of the UNIDEX U600 MMI, so normally
the user would never use the parameter variant names listed below; instead they would
use these provided aliases.

There are two major differences to be noted when using an alias as opposed to parameter
names:

1. Unlike all other keywords, the case matters. The user must enter the alias in
exactly the case shown in \U600\Programs\AerParam.Pgm.

2. Unlike all other variants, the user does not enter the dollar sign preceding the
alias names.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-23

3.11.5.2. Global Parameters

SYNTAX: <globalParameter> is $PGLOB[~<fExpression>~]

EXAMPLES: $PGLOB[2]
NumGlobalDoubles ; Note this is using an alias, see 3.11.5.1

Global parameters hold floating-point values used in the overall operation of the
controller. For example, the servo loop time (1 or 4 kHz) and the emergency stop enabled
state are global parameters. In some cases (such as emergency stop enable) only integer
values are meaningful, but in general a global parameter is considered a floating-point
value.

The square brackets are required, not optional as in variables. The expression within
the square brackets must be a non-negative integer. If it is not a positive constant
integer, the compiler generates an error. If it is an expression that does not reduce to
a non-negative integer, then the controller generates a fault when it tries to execute
the line containing the variable.

Global parameters have universal scope, meaning they are accessible from any program
on any task.

Global parameters are only used by the CNC interface. Unless CNC motion is used these
parameters can be ignored. These values are used to specify information relevant to all
axes and all tasks. The case of the global parameter is significant, as defined in the User’s
Guide (EDU157) and the MMI online help file.

Expressions U600 CNC Programming Manual

3-24 Aerotech, Inc. Version 1.1

3.11.5.3. Task Parameters

SYNTAX: <taskNum> is 1 or 2 or 3 or 4
<taskParameter> is $PTASK[~<fExpression>~])[[.<taskNum>]]

EXAMPLES: $PAXIS[5].1
NumTaskDoubles.1 ; Note this is using an alias, see 3.11.5.1

Task parameters hold floating-point values used in the overall operation of a single task
on the controller. For example, the MFO and Task Fault number are task parameters. In
some cases (such as Task Fault Number) only integer values are meaningful, but in
general a task parameter is considered a floating-point value.

The square brackets are required, not optional as in variables. The expression within
the square brackets must be a non-negative integer. If it is not a positive constant
integer, the compiler generates an error. If it is an expression that does not reduce to a
non-negative integer, then the controller generates a fault when it tries to execute the
line containing the variable.

The syntax for a task parameter allows a task number to be optionally included. If a task
number is included, the parameter for that task is referenced (the controller may execute
up to four simultaneous tasks). If a task number is not included, then the task parameter
for the current task is referenced. Task parameters have universal scope, meaning they are
accessible from any program on any task.

Task parameters are only used by the CNC interface. Unless CNC motion is used these
parameters may be ignored. These values are used to specify task specific information.
Each task has its own independent set of task parameters. See the User’s Guide
(EDU157) and the MMI online help file.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-25

3.11.5.4. Axis Parameters

SYNTAX: <axisParameter> is $PAXIS[~<fExpression>~]).<axisLetter>

EXAMPLES: $PAXIS[16].X ; set X axis KI axis parameter
KI.X ; Note this is using an alias, see 3.11.5.1

Axis parameters hold integer values used in the overall operation of a single axis. For
example, the Proportional Gain and Axis Position (in counts) are axis parameters. Axis
parameters only hold integer values. Axis related parameters that are floating point are
called machine parameters.

The programmer must supply an axis letter to indicate the axis that the parameter
references.

The square brackets are required, not optional as in variables. The expression within
the square brackets must be a non-negative integer. If it is not a positive constant
integer, the compiler generates an error. If it is an expression that does not reduce to
a non-negative integer, then the controller generates a fault when it tries to execute
the line containing the variable.

Axis parameters have universal scope, meaning they are accessible from any program on
any task.

Axis parameters are on a per axis basis, meaning, that each axis has its own independent
set of parameters (as defined in the User’s Guide (EDU157) and the MMI online help
file). All axis parameters are specified in capital letters and integer values. Machine
parameters are specified on a per axis basis as well, but are decimal or floating point
values.

Expressions U600 CNC Programming Manual

3-26 Aerotech, Inc. Version 1.1

3.11.5.5. Machine Parameters

SYNTAX: <machineParameter> is $PMACH[~<fExpression>~]).<axisLetter>

EXAMPLES: $PMACH[7].X
HOMETYPE.X ; Note this is using an alias, see 3.11.5.1

Machine parameters hold floating-point values used in the overall operation of a single
axis. For example, the Maximum Feedrate and the Home Offset are machine parameters.
In some cases (like Home Type) only integer values are meaningful, but in general a
machine parameter is considered a floating-point value.

The programmer must supply an axis letter to indicate the axis that the axis parameter
references.

The square brackets are required, not optional as in variables. The expression within
the square brackets must be a non-negative integer. If it is not a positive constant
integer, the compiler generates an error. If it is an expression that does not reduce to
a non-negative integer, then the controller generates a fault when it tries to execute
the line containing the variable.

Machine parameters have universal scope, meaning they are accessible from any program
on any task.

Machine parameters are only used by the CNC interface. Unless CNC motion is used,
these parameters can be ignored. These values are used to specify additional information
required by the controller to calculate axis motion. Each axis has its own set of machine
parameters (as defined in the User’s Guide (EDU157) and the MMI online help file).

3.11.5.6. Modifying Parameters from within a CNC Program

3.11.5.6.1. Axis Parameters

An axis parameter may be modified within a CNC program (or MDI command line) by
specifying the axis parameter name followed by a decimal point and the axis name. The
case of these axis parameters is significant (all are upper case letters), as defined in the
User’s Guide (EDU157) and the MMI online help file.

The axis name is the name assigned when the axis is configured and bound to the task
within the axis configuration wizard. If the default axis name is used, the task axis names
would apply.

3.11.5.6.2. Machine Parameters

Any machine parameter may be modified within a CNC program (or MDI command line)
by specifying the machine parameter name followed by a decimal point and the axis
name. The case of these machine parameters is significant, as defined in the User’s Guide
(EDU157) and the MMI online help file.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-27

The axis name is the name assigned when the axis is configured and bound to the task
within the axis configuration wizard. If the default axis name is used, the task axis names
would apply.

EXAMPLE: MaxFeedrateIPM.X = 30 ; Write to machine parameters
MaxFeedrateRPM.Y = $GLOB3

$GLOB0 = MaxFeedrateIPM.X ; Read from machine parameters
$GLOB1 = MaxFeedrateRPM.Y

3.11.5.6.3. Task Parameters

Task parameters may be referenced within another task, by appending a decimal point and
then the desired task number to the end of the task parameter. The case of these task
parameters is significant, as defined in the User’s Guide (EDU157) and the MMI online
help file. A task parameter on the current task may be modified directly, without the
decimal point and task number as shown in the examples below, i.e.; RIAction1 =
RIO_CYCLESTART.

For example, a single CNC program could start a CNC program running on tasks 1, 2 and
3 from within task 4, as shown below;

RIAction1.1 = RIO_CYCLESTART ; Source the cycle start action on task 1
RIAction1.2 = RIO_CYCLESTART ; Source the cycle start action on task 2
RIAction1.3 = RIO_CYCLESTART ; Source the cycle start action on task 3

The status of those programs could then be read via that tasks’ Status1 word.

$GLOB1 = Status1.1 ; read status word 1 from task 1
$GLOB2 = Status1.2 ; read status word 1 from task 2
$GLOB3 = Status1.3 ; read status word 1 from task 3

A full example is illustrated in TN0003, within the online help file.

Expressions U600 CNC Programming Manual

3-28 Aerotech, Inc. Version 1.1

3.11.6. Virtual I/O

Virtual I/O (virtual input and output) variants report the state of virtual inputs and/or
virtual outputs. If these virtual locations are tied or mapped to physical hardware
locations (see EDU154 UNIDEX 600 Series Hardware Manual), then the corresponding
virtual I/O reflects (or alters in the case of outputs) the state of the hardware mapped to
them. Virtual outputs and inputs that are not mapped to hardware behave just like global
variables; the user can set or read them at will. The exception being analog inputs, which
maintain -10 volts.

In general, both inputs and outputs can be assigned or viewed, although assigning to a
virtual input mapped to a hardware device is meaningless (the hardware device
immediately overwrites the setting). Assigning values to virtual inputs not mapped to
hardware can be done and is useful in some cases.

In I/O assignments (see Section 3.11.3) it is guaranteed that the preceding motion
statement (excluding asynchronous motion) is completed before the assignment is done.

I/O has universal scope, meaning they are accessible from any program on any task.

3.11.6.1. Binary I/O Bits

SYNTAX: <I/O> is $BI<integer> or $BI[~<fExpression>~] or

$BO<integer> or $BO[~<fExpression>~]

EXAMPLES: $BO4
$BI[8]
$BI[8+$GLOB0]

Binaries are 1-bit integer values that range from 0 to 1. If the user tries to assign a value
outside of this range to a binary I/O variant, the value is set to 0.

The expression within the square brackets must be a positive integer. If it is not a positive
constant integer, the compiler generates an error. If it is an expression that does not
reduce to a positive integer, then the controller generates a fault when it tries to execute
the line containing the variable.

The “BI” prefix indicates a binary input; the “BO” prefix indicates a binary output. There
are 512 virtual binary inputs and 512 virtual binary outputs available, so the index
expression for a binary input or output must evaluate to an integer between 0 and 511. If
the index expression evaluates to a value outside of this range, or to a non-integer, then
the controller generates a fault.

By default, the first 16 binary inputs and outputs are mapped to the UNIDEX 600 card
inputs and outputs. See the EDU154 UNIDEX 600 Hardware Manual for details. By
default 40 output and 40 input bits are mapped to each encoder expansion (4EN-PC) card,
if they are present in the user’s system.

The user can write or read binary inputs or outputs, but if a binary input is mapped to
hardware, then it is overwritten immediately by the state of the physical hardware.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-29

3.11.6.2. Virtual I/O Registers

SYNTAX: <I/ORegister> is $RI<integer> or $RI[~<fExpression>~] or

$RO<integer> or $RO[~<fExpression>~]

EXAMPLES: $RO4
$RI[8]
$RI[8+$GLOB0]

Registers contain unsigned 16-bit integer values that can range from 0 to 65535. If the
user tries to assign a register a value larger than 65535, the register is set to a value of
mod(α,65536). If the user tries to assign to a register a value less than 0, the register is set
to a value of mod(65536+α,65536). If the user tries to assign a non-integer value to a
register, it truncates the value to the next lowest integer.

The expression within the square brackets must be a non-negative integer. If it is not a
positive constant integer, the compiler generates an error. If it is an expression that does
not reduce to a non-negative integer, then the controller generates a fault when it tries to
execute the line containing the variable.

The “RI” prefix indicates a register input; the “RO” prefix indicates a register output.
There are 128 register inputs and 128 register outputs available, so the index expression
for a binary input or output must evaluate to an integer between 0 and 127. If the index
expression evaluates to a value outside of this range, or a non-integer, then the controller
generates a fault.

By default, no virtual registers are mapped to any hardware.

The user can write or read register inputs or outputs, but if a register input is mapped to
hardware, then it would be overwritten immediately by the state of the physical hardware,
if present.

All binary and register assignment commands will wait until all axes in previous
motion commands are “in-position ”.

3.11.6.3. Analog Inputs

SYNTAX: <I/OAnalog> is $AI<integer> or $AI[~<fExpression>~]

EXAMPLES: $AI[8]
$AI[8+$GLOB0]

Analog inputs are returned as signed floating-point values that can range from -10 to 10
volts. They are read-only, meaning the user cannot assign to an analog value, they can
only read it.

The expression within the square brackets must be a non-negative integer. If it is not a
positive constant integer, the compiler generates an error. If it is an expression that does

Expressions U600 CNC Programming Manual

3-30 Aerotech, Inc. Version 1.1

not reduce to a non-negative integer, then the controller generates a fault when it tries to
execute the line containing the variable.

Potentially, there are 16 available analog inputs (4 are standard on a UNIDEX 600 card,
with 4 more available on each additional 4EN-PC expansion card), so the index
expression for a binary input or output must evaluate to an integer between 0 and 15. If
the index expression evaluates to a value outside of this range, the controller generates a
fault. If the index expression evaluates to a non-integer value, then the controller
generates a fault.

The user only has four analog inputs in the UNIDEX 600 Series axis processor card
and four analog inputs on each encoder expansion card (4EN-PC) in the system. If
the user tries to read an analog input that does not exist in the system, analog input
15 for example, when there is only one encoder expansion card, then the value
returned is -10 (volts).

3.11.7. Call Arguments

SYNTAX: <callArgument> is $<argLetter> [<fExpression >]

EXAMPLE: $p4.0
 $X[8+$GLOB0]

$x

This section details passing and handling parameters in relation to subroutines and
programs. The details concerning parameter passing apply equally to the FARCALL
statement and the CALL statement. However, you cannot use call parameters in an
ONGOSUB statement.

A subroutine may have up to 20 parameter values passed to it; each identified by the
sixteen axis names and four additional letters (O, P, Q, and R). These parameter names
may be reassigned for unused axes via the axis configuration wizard within the MMI 600.
See the MMI help file for more information. Unlike the axis name parameters, these last
four names are not case sensitive (i.e., x is a different parameter than X, but p and P are
the same parameter). Using the syntax example: “X78 Y$GLOB8”, the X parameter value
is 78, and the Y parameter is the value of GLOBAL variable 8, at the time the subroutine
is called.

Call arguments may be assigned floating point values. However, parameters are passed by
value (the value is not passed back to the program that called the program assigning to the
call argument).

The value of a parameter within a called subroutine is referred to by a dollar sign
followed by the parameter name. Each of the 20 parameters are optional, meaning, the
same subroutine may be called with no arguments, all 20 arguments, or any number in
between. If there is no argument specified when the subroutine is called, then its value as
referenced within the called subroutine is 0.

U600 CNC Programming Manual Expressions

Version 1.1 Aerotech, Inc. 3-31

The user should test each parameter to see if a value for that parameter was passed into
the subroutine. The DEFINED keyword serves this purpose. The example clarifies this.

3.11.7.1. Call Argument Existence Testing

SYNTAX: <callArgumentExist> is $<argLetter>.DEFINED

EXAMPLE: IF $X.DEFINED == 1 THEN

$GLOB1 = $X

ENDIF

Any number of parameter values may be passed into a subroutine or program. The
.DEFINED keyword is used to determine whether a particular parameter was assigned a
value when the subroutine or program was called. The .DEFINED keyword returns one, if
the specified call argument was assigned a value from the program/subroutine call
argument list when the program/subroutine was called. Otherwise, it returns zero. See the
Example Program for clarification.

Call argument existence variants cannot be assigned to (the syntax “$X.DEFINED=1” is
illegal).

If a parameter is referenced that was not passed into a program or subroutine, then a "Call
Stack parameter not passed" error Message is generated.

Expressions U600 CNC Programming Manual

3-32 Aerotech, Inc. Version 1.1

EXAMPLE PROGRAM
CALL PRODUCT ; Will set global0 to 1
CALL PRODUCT X3 ; Will set global0 to 18

CALL PRODUCT X3 p2 Y6 ; Will set global0 to 36
M02

DFS PRODUCT
$GLOBAL0 =1

IF ($X.DEFINED == 1) THEN
$GLOBAL0 = $GLOBAL0 * $X

; NOTE: If you use $X when it hasn’t been passed, a "Callstack
; parameter not passed" task fault is generated.

ENDIF
IF ($Y.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $Y
ENDIF
IF ($Z.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $Z
ENDIF
IF ($U.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $U
ENDIF
IF ($C.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $C
ENDIF
IF ($D.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $D
ENDIF
IF ($A.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $A
ENDIF
IF ($B.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $B
ENDIF
IF ($x.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $x
ENDIF
IF ($y.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $y
ENDIF
IF ($z.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $z
ENDIF
IF ($u.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $u
ENDIF
IF ($c.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $c
ENDIF
IF ($d.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $d
ENDIF
IF ($a.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $a
ENDIF
IF ($p.DEFINED == 1) THEN

$GLOBAL0 = $GLOBAL0 * $p
ENDIF
ENDDFS

∇ ∇ ∇

U600 CNC Programming Manual Compiler Directive Commands

Version 1.1 Aerotech, Inc. 4-1

CHAPTER 4: COMPILER DIRECTIVE COMMANDS

In This Section: Page
• Overview... 4-1
• Define Statements.. 4-2

 • Include Statement.. 4-6
 • AxisNames Statement ... 4-7

4.1. Overview

This chapter describes the compiler directive commands. Compiler directives are
instructions to the compiler, instructing it how to interpret the program text. They include
or replace text in the program before compiling it. They are especially useful for
accessing parameters and implementing user defined M-codes.

The preprocessor (the part of the compiler that executes directives) executes all compiler
directives in the program text before handing off the program to the actual compiler.
Refer to Figure 4-1.

Figure 4-1. Flow of Execution of Compiler Directives

Compiler Directive Commands U600 CNC Programming Manual

4-2 Aerotech, Inc. Version 1.1

4.1.1. Compiler Directives Syntax

The user has the option to save either the intermediate or the object files to disk. Refer to
the UNIDEX 600 Series Library Reference Manual P/N EDU156, under
AerCompilerCompile() file, for more details.

SYNTAX: <Compiler-directive line> is <defineStatement> or <includeStatement>

The above states that compiler directives must be either include or define statements.

The syntax and semantics of UNIDEX 600 Series controller CNC language preprocessor
directives are very similar, but not identical to the ANSI C language standard.
Summarized below are the differences in order of their importance.

• The UNIDEX 600 does not have conditional preprocessor directives (#ifdef
and #endif).

• The UNIDEX 600 does not allow # or ## operators in replacement strings.

• Multi-line substitution syntax rules differ slightly.

• Substitution within preprocessor directive text rules differ slightly.

• The UNIDEX 600 does not require double quotes around filenames.

4.2. Define Statements

SYNTAX: <defineStatement> is ~#define <targetWord> [<replacementString>]

The #define statement directs the compiler to replace all occurrences of the target word in
the program with the replacement string. This directive is only active for all lines
following the define statement. Occurrences of the target-word above (on previous CNC
lines) will not be replaced.

The #define statement is powerful, since the replacement string can be nearly anything,
including multiple lines. This means a single word in a program can represent multiple
lines. Refer to the description in Section 4.2.4. Replacement with Multiple Lines.

The “#define” must be separated from the target word by white space and the target word
must be separated from the replacement string by white space as well. The “#” sign may
be preceded by white space.

#define directives can be overridden or deactivated at any time. If a #define statement
has no replacement string argument, it is considered an “undefine”. It deactivates any
previous define instruction having the same target word. After an “undefine”, no
replacements of the target word are made.

If the user undefined using a target word that is not currently active or if the user redefines
a target word already active, the compiler delivers a warning.

U600 CNC Programming Manual Compiler Directive Commands

Version 1.1 Aerotech, Inc. 4-3

EXAMPLES:
#define LaserState $BI7 ; After this statement, “BI7” will be replaced

; with “LaserState”
#define $BI7 ; After this statement, “BI7” will no longer be

; replaced.

4.2.1. The Target Word

SYNTAX: <targetWord> is <alphanumeric>1

except #~define
except #~include

There is no limit to the allowable length of a target word.

The target word consists of characters, letters, and the underscore. Target words are not
keywords. Identification of the target word is case sensitive. For example, the target
words: “DOG”, “dog”, and “Dog” are all legal and represent different targets.

There are two exceptions, the define and include command keywords are not allowed
as target words.

4.2.2. Recognition of the Target Word

Substitution of the replacement text only takes place at locations where there is
recognition of the target word. Recognition of the target will not take place within
comments. Recognition of the target word in the text only occurs if the two characters on
either side of the word are not alphanumeric characters. For example, if the statement
“#define dog spot” is made, then the following text conversions take place.

“my dog is friendly” becomes “my spot is friendly”
“the dogs are friendly” becomes “the dogs are friendly”
“7*dog[6]” becomes “7*spot[6]”

Recognition of the target word only occurs on lines following the define referencing the
target word. Lines appearing in the file before that define, or appearing in files included
before that define, will not be searched for the target word referenced in that define. The
same comment applies to “undefines”. Refer to the example below.

$GLOB0 = CONSTANT ; no substitution of CONSTANT done here
#define CONSTANT 2 ; this defines CONSTANT
$GLOB0 = CONSTANT ; substitution of CONSTANT with 2 is done here
#define CONSTANT ; this “undefines” CONSTANT
$GLOB0 = CONSTANT ; no substitution of CONSTANT done here

becomes:

$GLOB0 = CONSTANT
$GLOB0 = 2
$GLOB0 = CONSTANT

Compiler Directive Commands U600 CNC Programming Manual

4-4 Aerotech, Inc. Version 1.1

Replacement of target words within a replacement string (recursive substitution) occurs
under some circumstances (see Section 4.2.5. for details).

4.2.3. The Replacement String

SYNTAX: <replaceCharacter> is <ASCIICharacter>

or / x <Hexdigit> <hexdigit>

except \
except ;
except <lineTerminator>

<replacementString> is <replaceCharacter>1

 except #~define
except #~include

Unlike the target word, a replacement string allows almost every other character,
including spaces, tabs and quotes. However, the comment character ‘;’ and the ‘\’ are not
allowed in the replacement string. Also, the replacement string cannot be the line
terminator or the #define and #include keywords.

There is no limit to the allowable length of a replacement string.

The line terminator “;” and “\” characters end the replacement text. More definitively, the
last non-white-space character preceding the first “;” or “\” or line terminator found is the
last character in the replacement string. This allows the programmer to comment the
define lines.

#define dog spot ; this comment is not replaced into the text
$STRGLOB1 = “dog” ; this comment is retained

becomes:

$STRGLOB1 = “spot” ; this comment is retained

Replacement characters may also be specified as hexadecimal codes, for example, the
replacement string “12” is equivalent to “\x31\x32”. This is especially useful for adding
spaces at the end of replacement strings, since trailing spaces are normally removed from
replacement strings (see EXAMPLE 3 of Chapter 7: Custom Commands).

Replacement of target words within a replacement string (recursive substitution) occurs
under some circumstances (see Section 4.2.5. for details).

U600 CNC Programming Manual Compiler Directive Commands

Version 1.1 Aerotech, Inc. 4-5

4.2.4. Replacement with Multiple Lines

The “\” character is not allowed in a replacement string because it is reserved as the line
terminator character. If the define directive line sees this character “\”, then the
preprocessor appends a line terminator to the replacement string and continues looking
for more replacement string text on the next line. All text following the “\” on that same
line, if any, is ignored. Refer to the example below.

#define M1000\ ; random comment 1
BI[0]=0\ ; random comment 2
BI[1]=1 ; random comment 3
M1000 ; random comment 4

becomes:

BI[0]=0
BI[1]=1

The comments for the lines within the replacement string are not preserved in the
text.

4.2.5. Replacement within Replacement Strings

Text within a replacement string may contain target words established in earlier defines,
and normally replaces the target word. This new replacement string may contain other
target words that will be replaced. This complicated process is called recursive
substitution.

However, once making a particular replacement(s) within a replacement string, that
replacement is not made again in that string. Refer to the example below.

#define END_OF_TRAVEL 10.0
#define X_END $x(END_OF_TRAVEL)
#define BAD_SYNTAX (10.0 - BAD_SYNTAX)
#define Y_END $Y(BAD_SYNTAX)

G1 X_END Y_END

becomes:

G1 x$(10.0) $Y((10.0 - BAD_SYNTAX))

Compiler Directive Commands U600 CNC Programming Manual

4-6 Aerotech, Inc. Version 1.1

4.3. Include Statement

SYNTAX: <Include-statement> is ~#~include [[“]]<filename>[[“]]

 The preprocessor inserts the entire text of the file named into the program. The text
inserted receives the identical treatment as the actual text in the program. This means that
any preprocessor directives found in the included text will be obeyed. For example, the
user can include files within included files. There is no limit no the ‘nesting’ level of
includes. The included file will be searched for in the curent program directory, this is
\U600\Programs by default.

The user can surround the filename with double quotes, since this has no effect on the
function of the include statement.

4.3.1. Filenames

SYNTAX: <filename> is <filespecletter>1

 <filespecletter> is <alphanumeric> or \ or [or] or :

In addition to the above rules, a filename must represent a valid Windows NT filename.
Filenames can be up to 32 characters long. The user can place valid directory
specifications as a filename, including paths. If the user does not provide a path, it will
use the default path. The default path is the working directory for the first included file
seen in the program. However, for all subsequent includes, the default path is the
directory where the first included file was found. In other words, if a path is found in the
first file included, then the default path changes to the path of the first file included.

The filename will not be searched for replacements from defines, meaning the following
program text will not include the file “okFile.pgm”, it will try to include the file
MY_FILE.

#define MY_FILE okFile.pgm
#include MY_FILE

EXAMPLES:
#include afile.txt
#INCLUDE ..\anotherfile.pgm
#include “e:\u600\aercmplr\this_file.pgm”

4.3.2. Standard Include Files

The ‘\U600\Programs\AerParam.Pgm’ file is always automatically included within the
program automation page of the setup page of the UNIDEX 600 MMI. The program
automation page will not indicate this file is auto included, but it is and cannot be
removed. This file contains aliases for parameters and certain constants. Without this file
the programmer cannot access parameters with their names.

U600 CNC Programming Manual Compiler Directive Commands

Version 1.1 Aerotech, Inc. 4-7

4.4. AxisNames Statement

SYNTAX: <axisNameStatement> is ~#~axisnames <axisname>1

<axisName> is (<letter> or B)1

except : certain one letter axisnames are illegal.

EXAMPLE: #axisnames Xaxis, Yaxis, Spindle

The axisnames statement defines alternatives to the axis letters when referring to axes. An
axis name can be any string of letters and underscores excluding digits in the name.
Names are case sensitive, meaning, ‘XAXIS’ is a different axis compared to ‘xaxis’. Also,
many one letter names are illegal, since they can be confused with command letters. The
only legal one letter axis names are: X,Y,Z,U,V,W,A,B,C,D,L, and x, y, z, u, v, w, a, b, c,
d, and l.

The position of an axis name in the axisnames statement corresponds to the axis whose
name is replaced. In the above example, the name ‘Xaxis’ is the new name for ‘X’, and
‘Spindle’ is the new name for the ‘Z’ axis. The default set of axis names are: ‘X, Y, Z, U,
A, B, C, D, x, y, z, u, a, b, c, d’. The user can rename from one to sixteen axes, but if the
user desires to rename only one axis, the user must also rename axis names for all
positions up to the position of that axis. For example, to rename only the ‘D’ axis to
‘newaxis’ the user must use the statement: ‘#axisnames X,Y,Z,U,A,B,C,newaxis’. Once
an axis is renamed, the old name cannot be used; the new name must be used.

These new names can be used equivalently to the axis letters in axis masks, and parameter
specifications: (‘BIND X, newaxis,Z’ and ‘DRIVE.newaxis=1’ are fine). However, when
the axisname has more than one letter, special considerations are necessary when using
the axisname in an axis point with constants (‘X6 Y7’). The user must separate a multi-
letter axis name from the constant value with a space, =, or parenthesis. See the example
on the following page.

There can be one unique axisnames statement per program. The position of the axisnames
statement in the program is irrelevant; the statement always applies to the whole file
regardless of its placement in the file.

EXAMPLE:
#axisnames X,SPINDLE
G1 X7.8 ; OK
G1 X$glob9 ; OK7
G1 SPINDLE7.8 ; INVALID SYNTAX
G1 SPINDLE 7.8 ; OK
G1 SPINDLE=7.8 ; OK
G1 SPINDLE(7.18) ; OK
G1 SPINDLE $glob9 ; OK

∇ ∇ ∇

Compiler Directive Commands U600 CNC Programming Manual

4-8 Aerotech, Inc. Version 1.1

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-1

CHAPTER 5: G-CODE COMMANDS

In This Section: Page
• Introduction.. 5-2
• CNC Block Syntax... 5-13
• Non-Contoured Motion (G0) ... 5-23
• Contoured Motion (G1, G2, G3).. 5-24
• Dwell (G4) ... 5-35
• Velocity Blending (G8, G9, G108, G109) .. 5-36
• Contoured Motion on Coordinate System # 2 (G12, G13)................................. 5-41
• Coordinate System #1 Configuration (G16 – G19).. 5-43
• Normalcy Motion Overview (G20, G21, G22) ... 5-45
• Corner Rounding (G23, G24) .. 5-50
• Coordinate System #2 Configuration (G26 – G29).. 5-51
• Software Limits Overview ... 5-52
• Safe Zones (G34, G35, G36, G37) .. 5-52
• Backlash Compensation (G38, G39)... 5-57
• Cutter Radius Compensation (G40, G41, G42, G43, G45)................................ 5-58
• Polar/Cylindrical Transformations (G45, G46, G47)... 5-68
• Fixture Offsets (G53 – G59) .. 5-74
• Contoured Accel/Decel Overview (G60, G61) .. 5-81
• Profile Resolution Time (G62)... 5-84
• Accel/Decel Rates and Modes (G63 -> G68).. 5-84
• Metric/English Units (G70, G71)... 5-89
• Restore Preset Position Registers... 5-90
• Transformation Overview (G83, G84)... 5-91
• Positioning Modes (G90, G91) .. 5-95
• Preset Positions (G92).. 5-97
• Feedrate Modes (G93, G94, G95).. 5-99
• Dominant Feedrate Overview (G98, G99) ... 5-105
• Spindle Shutdown Modes (G100, G101) ... 5-108
• Modal Velocity Profiling (G108, G109) ... 5-109
• Circular Direction Codes (G110, G111) .. 5-110
• Block Delete Mode (G112, G113)... 5-112
• Optional Stop Mode (G114, G115).. 5-113
• Dry Run Mode (G116, G117) .. 5-113
• Servo Update Rate (G130, G131) .. 5-114
• Cutter Tool Offset Compensation Overview (G143, G144, G149).................. 5-115
• Scale Factor (G150, G151) .. 5-117
• Suspend All Fixture Offsets ... 5-119
• Rotary Axis Acceleration Rates (G165, G166).. 5-120
• Block Delete2 Mode (G212, G213)... 5-121
• CNC Block Look-Ahead (G300, G301) .. 5-122
• High Speed Machining (G310, G311) ... 5-126
• M-codes ... 5-128

G-code Commands U600 CNC Programming Manual

5-2 Aerotech, Inc. Version 1.1

5.1. Introduction

This chapter describes the syntax and functionality of all G-code lines (also called G-code
blocks). Refer to Chapter 2: Commands for a basic description of CNC programs.

The term G-code used in this document refers to more than just CNC words starting with
a “G” (i.e., G90). The term G-code refers to all the syntax defined in RS-274D including
G-codes, M-codes, F-codes, etc. For example, the line N07 G2 X5 Y6 I5 J7 F30 is legal
G-code syntax.

However, this chapter does not include any information on I/O M-codes. Only the data on
the RS-274 defined M-codes such as M0, M1 (program control) and M3, M4 (spindle
control) can be found in this chapter. Refer to Chapter 7: Custom Commands for details
on the I/O M-codes.

A number of basic CNC language elements used in G-codes are not described here.
Instead the descriptions are in Chapter 3: Expressions. Table 5-1 explains where to
find descriptions of these items.

Table 5-1. Where to Find Details

Term Example 2 Example 2 Reference
<Expression> 7*6+$GLOB0 7.8 Section 3.7
<CNCMask> X Y z x Section 3.4
<axisPoint> X55.6 Z5 Z$GLOB0 Section 3.6.1.2
Command Words (start with G or M) G1 M2 See Table 5-3
All other Words (start with F,E,I,J...) F100 I8.9 See Section 5.2.
Motion Details n/a n/a See Section 5.1.1

The reader should note that there are a number of details that concern all G-code motion.
These concern the position, velocity, and acceleration of all G-code moves, as well as
prerequisites for moving an axis. Refer to Section 5.1.1 for details. We strongly
recommend that the programmer become familiar with these before using any motion G-
codes.

Table 5-3 alphanumerically lists all the G-code commands available to the UNIDEX 600
Series controller CNC language and where to find information on that G-code. The
sections covering the G-codes and M-codes follow the same convention within this
chapter.

5.1.1. Motion Types Available

There are two types of motion that can be generated from CNC language commands:
synchronous and asynchronous.

When executing synchronous motion CNC commands, the controller does not move to
the next CNC command in the program until the motion finishes and the axes are in
position. The user can move any number of axes (up to 16) at once in a synchronous
motion command. Synchronous motion commands include G0, G1, G2 and HOME.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-3

In asynchronous motion, the motion is initiated, but the controller immediately moves to
the next CNC command in the program. The controller does not wait for the motion to
complete. All asynchronous motion commands can only move one axis at a time.

Asynchronous motion offers more versatility, allowing the user to perform other tasks
during a time consuming move. However, asynchronous moves potentially, are more
dangerous, since the programmer is responsible for making sure the move finishes if an
ensuing command requires the move to already be in position. This verification can easily
be done by monitoring the status3 task parameter. For example, the two code fragments
below are equivalent.

HOME X Y ; Homes X and Y axis synchronously

HOMEASYNC X ; This code block imitates a HOME XY
HOMEASYNC Y
:waithere
if (Status3.MotionActive EQ 1) goto waithere

If an asynchronous move is not complete and the program attempts to move an axis
(either with a synchronous or asynchronous motion), then the CNC stops and waits until
the first motion completed, before starting the second move.

5.1.2. Motion Commands Available

Table 5-1 shows the available CNC move options. Note that some commands can only
move one axis at a time.

Table 5-2. CNC Move Options

CNC
Command

Sync
Type

Multi
Axis

Example Description

G0 Sync Y G0 X5Y5 Non-contoured linear motion

G1 Sync Y G1 X5Y5 F100 Contoured linear motion

G2 Sync Y G2 Y5X5 I4J5 F100 Contoured circular motion

HOME Sync Y HOME X Y Homes axes

MOVETO Async N MOVETO X 5 100 Move X to 5 (absolute coord) at 100 speed

INDEX Async N INDEX X 5 100 Move X 5 (relative coord) at 100 speed

STRM Async N STRM X 1 100 Starts motion (freerun) at 100 speed, in + direction

ENDM Async N ENDM X Ends freerun motion.

FEDM Async N FEDM X 5 100 Feeds in an axis 5 at speed 100

OSC Async N OSC X 5 100 Start oscillations of amplitude 5 at 100 speed

HOMEASYNC Async N HOMEASYNC X Homes axis asynchronously

G-code Commands U600 CNC Programming Manual

5-4 Aerotech, Inc. Version 1.1

There are a few other miscellaneous ways to indirectly generate motion. Like cutter
compensation (G21) and normalcy (G41), but these are not commonly used, and too
complex to summarize here.

5.1.3. Prerequisites for Initiating Motion from the CNC

The U600 offers enormous flexibility in motion; unfortunately this means the user must
choose between many options. Before any movement on an axis, including CNC moves,
at minimum, accomplish the following on the axes involved in the move.

Only step 1 cannot be performed from the CNC language.

1. Configure the axes. Refer to EDU157 UNIDEX 600 Series User’s Guide,
Getting Started/Axis Configuration in Chapter 2.

2. Set the required Axis/Machine parameters. Refer to EDU157 UNIDEX 600
Series User’s Guide, Getting Started/Axis parameters and Machine
parameters in Chapter 2.

This includes at a minimum:

a. Gains (KP, KI, etc. axis parameters)
b. Type machine parameter (rotary .vs. linear)
c. CountsPerInch or CountsPerDeg machine parameters.

3. Enable the axes. (Refer to the ENABLE command)
4. Set the axes’ fault masks. Refer to EDU157, UNIDEX 600 Series User’s

Guide, under Faults in Chapter 2.

There is no strict requirement to follow step 4, since the fault masks are set to -1 (abort
motion on any fault). However, since there are a number of conditions, called faults, that
might occur during motion and may or may not require special handling, we strongly
recommend the user refer to EDU157, UNIDEX 600 Series Users Guide, under Faults in
order to understand fault handling on the U600.

5.1.4. Command vs. Actual

The controller directs the motors, via the drives, to their commanded positions at specific
velocities. The actual position and velocity is read from the feedback devices
(encoders/resolvers). The error values are the actual values minus the command values.
The function of the servo loop, is to attempt to make the actual values equal the
command values. In other words, make the error values zero.

However, there are certain modes where the error values do not converge to zero; in
offsets (G92), mirroring (G83), and parts rotation (G85). The coordinates provided by the
user specifies their transformation before usage. The command values are always what the
user supplies, however, the actual values may converge to other values if the user

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-5

activates one or more of the above modes. For example, if the user moves to X=5, sets
this as the origin (G92 X0), then after a G90 G1 X9, the command value will display 9,
while the actual value displays 14.

5.1.5. Target Positions

The user can specify target positions relative to the current position or relative to a fixed
origin (absolute). Refer to the particular command for details on the available mode.

If the axis is defined as a rotary axis with modulo position and moving in a contoured or
rapid move, then the controller moves to the target position in the direction of least
distance. For example, if B is rotary and at 0 degrees, then a move to 270 degrees causes
a counterclockwise rotation of 90 degrees, not a clockwise rotation of 270 degrees. If the
amount to be moved is exactly 180 degrees, then the motion is clockwise.

There are some minor considerations due to the fact that the user specifies floating point
numbers, but the actual positions (counts) are integers. Normally, these are insignificant
because the errors are always less than a count. However, it does mean that the floating
point numbers reported as positions/velocities will not exactly match the floating point
values specified by the user. The following information provided is for those interested in
knowing the details of the floating point to counts conversion. First of all, the controller
always truncates position values. This means that the move may be as much as one count
short of the desired position. For example, if there are 100 counts per foot and the user
specifies a move of 1 inch, the controller moves 8 counts, not 8.333 counts. Also,
velocities truncate to the nearest user-unit (user-units can be either mm or inches) per
second. Due to truncation, the controller may not be able to satisfy the acceleration, the
truncated velocities, and the distance exactly, since the move velocity and distance were
computed correctly in floating point. What the controller does, is satisfy both the
truncated distance and velocity exactly and make up for any mismatch in the decel phase
of the move. Therefore, the slope of the velocity during decel may vary slightly from the
expected result. A final consideration involves profiled or blended moves, (Refer to
Chapter 5: G-code Commands) that do not have a decel phase. Here the velocity during
the constant phases is reduced, so that the truncated distance is satisfied.

5.1.6. Simultaneous Movement of Multiple Axes

The CNC programmer can specify movement of multiple axes simultaneously in a G-code
move. The controller, then moves all the specified axes to the specific targets. However,
there are some subtle points concerning the velocities and the accomplishments of these
moves.

A G0 command is a rapid move, while G1/G2/G3/G12/G13 are contoured moves. A G0
moves each axis at that axis’ rapid feedrate (found under the Machine Parameters
Screen), and no effort is made to coordinate the separate axis’ motion. Each axis finishes
its move at different times and the G0 is not complete until the last axis completes its
motion.

G1, G2, G3, G12, and G13 are contoured moves. The axes move in a coordinated
fashion so that all axes finish their motion at the same time. The E and F words determine
the speed of the motion. However, the way the E and F word determine these speeds can

G-code Commands U600 CNC Programming Manual

5-6 Aerotech, Inc. Version 1.1

be complex if the user moves rotary and linear axes simultaneously. Refer to the G98
command for details.

G1 is a linear move, while G2 and G3 are circular moves. The user can specify a linear
and circular move to occur simultaneously by putting a G1 and a G2/G3 on the same line.
Also, the user can perform two circular moves simultaneously by using G12 and G13.
These G-codes are the same as the G2/G3 counterparts for simultaneous motion. For
example, the following code performs two circular moves simultaneously.

G2 I1 J1 X0 Y0 G13 I3 J3 Z0 A0

All CNC G-code motion statements wait until there motion is complete before proceeding
to the next CNC statement. These CNC statements are called synchronous. The controller
does provide asynchronous CNC motion statements that initiate a motion, but then
immediately continue to the next CNC statement (see INDEX or STARTM extended
commands). If such a statement executes, a following CNC statement that tries to execute
a move on an axis still moving due to the first asynchronous motion statement, will wait
until the first motion is complete before executing.

5.1.7. Velocity

For G0s, the machine parameter RapidFeedrateIPM specifies the speed of each axis in
the move. Since the G0 is not a contoured move, each axis acts independently and can
achieve its own rapid feedrate.

For contoured moves (G1, G2, G3, G12, or G13) the F and E words determine the vector
feedrate (see chapter 5, under Rate Words). This vector feedrate will be the speed of the
motion along the path described by the motion in space. However, for contoured moves,
no axis is allowed to exceed its individual maximum speed value (machine parameter
MaxFeedrateIPM or machine parameter MaxFeedRateRPM for rotary axes). The feedrate
of the entire move automatically scales down until no axis in the motion exceeds its own
maximum feedrate.

If the axes in a move are all linear, then the F word determines the vector feedrate. If all
the axes are rotary, then the E word determines the vector feedrate. However, if a move
contains axes of both rotary and linear type, then the controller probably will not be able
to achieve both the E and F feedrates at once. In these cases the controller picks one and
ignores the other. The feedrate it picks is called the dominant feedrate. The dominate
feedrate in a given move can be a complex subject. Refer to the G98 command for
details.

Asynchronous moves direct one axis at a time, so there is no speed problem. It simply
uses the speed provided in the asynchronous command parameter. Asynchronous moves
are not limited by the maximum feedrate machine parameter.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-7

5.1.8. Acceleration/Deceleration

The acceleration rates of both G0 moves and asynchronous moves are determined by the
axis parameters: ACCELMODE, ACCEL, and ACCELRATE. Similarly, the deceleration
rates of G0 moves and asynchronous moves are determined by the axis parameters:
DECELMODE, DECEL, and DECELRATE. Refer to Appendix C: Parameters in the
UNIDEX 600 Series User’s Guide P/N EDU157 for details.

The acceleration and deceleration rates of contoured synchronous moves (G1, G2, G3,
G12, G13) is set by the G-codes G60 through G68 (some of these G-codes are equivalent
to setting task parameters). There are many options for setting the acceleration and
deceleration rates for contoured moves, refer to the G60-G61 commands for details.

Also, there are some codes that determine whether acceleration and deceleration will take
place in between two contoured moves; G8, G9, G108 and G109. Refer to these G-codes
for details.

There are some situations of importance, when the controller is forced to command
an instantaneous or infinite acceleration or deceleration. These situations are fully
described under the G8 command.

5.1.9. Further Information

Further elaboration on the following topics of interest can be found discussed under the
documentation section shown to the right of the topic.

Position (see G90/G91 and G70/G71)
Velocity (see F and E codes)

Acceleration (see G60 or G61)

Transition between contoured motion blocks (see G8, G9, G108, and G109)

Mixing of rotary and linear type axes (see G98 or G99)

5.1.10. Modal

Many G-code words define modes of operation that exist until changed by another G
code, these are Modal G codes. Otherwise, the G code affects only the current CNC
program line.

WARNING

G-code Commands U600 CNC Programming Manual

5-8 Aerotech, Inc. Version 1.1

5.1.11. Default

During initialization, the UNIDEX 600 Series controller defines the initial modes as
shown in the fourth column of the table below. Some of these default modes may be
redefined within the task initialization page of the MMI600. These are shown in the fifth
column of Table 5-3.

Table 5-3. G-code and M-code Summary

G-code Page Description Modal Default

a n/a Axis Coordinate (see chapter 3) n/a n/a

A n/a Axis Coordinate (see chapter 3) n/a n/a

b n/a Axis Coordinate (see chapter 3) n/a n/a

B n/a Axis Coordinate (see chapter 3) n/a n/a

c n/a Axis Coordinate (see chapter 3) n/a n/a

C n/a Axis Coordinate (see chapter 3) n/a n/a

d n/a Axis Coordinate (see chapter 3) n/a n/a

D n/a Axis Coordinate (see chapter 3) n/a n/a

E n/a Rotary Feedrate Specifier (see section 5.2.3.2) Y n/a

F n/a Linear Feedrate Specifier (see section 5.2.3.2) Y n/a

S n/a Spindle Speed Specifier (see section 5.2.3.2) Y n/a

G0 5-23 Rapid Traverse, Point-to-Point Motion Y á

G1 5-24 Linear Interpolation Y

G2 5-25 CW Circular Interpolation on Plane #1 Y

G3 5-34 CCW Circular Interpolation on Plane #1 Y

G4 5-35 Dwell n/a

G8 5-39 Instantaneous Acceleration N

G9 5-40 Force Deceleration to Zero Velocity (see G109) N á

G12 5-41 CW Circular Interpolation on Plane #2 N

G13 5-42 CCW Circular Interpolation on Plane #2 N

G16 5-43 Assign Plane 1 Axes N

G17 5-44 X/Y Plane Selection Set #1 Y á

G18 5-44 Z/X Plane Selection Set #1 Y

G19 5-44 Y/Z Plane Selection Set #1 Y

G20 5-48 Disable Normalcy Mode Y á

G21 5-48 Normalcy On Left Y

G22 5-49 Normalcy On Right Y

G23 5-50 Corner Rounding Mode Y á

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-9

Table 5-3. G-code and M-code Summary Con’t

G-code Page Description Modal Default

G24 5-50 Disable Corner Rounding Mode Y

G26 5-51 Assign Plane 2 Axes Y

G27 5-51 X/Y Plane Selection Set #2 Y á

G28 5-51 Z/X Plane Selection Set #2 Y

G29 5-51 Y/Z Plane Selection Set #2 Y

G34 5-54 Set Safe Zone Minimum n/a

G35 5-54 Set Safe Zone Maximum n/a

G36 5-54 Enable Safe Zones Y

G37 5-55 Disable Safe Zones Y á

G38 5-57 Enable Backlash Compensation Y

G39 5-57 Disable Backlash Compensation Y á

G40 5-63 Disable Cutter Compensation Y á

G41 5-64 Enable Cutter Compensation Right Y

G42 5-65 Enable Cutter Compensation Left Y

G43 5-66 Set Cutter Compensation Radius Y

G44 5-67 Set Cutter Compensation Axes Y

G45 5-68 Disable Polar/Cylindrical Coordinates Y á

G46 5-68 Activate Polar Coordinates Y

G47 5-71 Activate Cylindrical Coordinates Y

G51 5-73 Monitor Touch Probe N

G52 5-73 Define Polar/Cylindrical Axes Y

G53 5-74 Cancel Fixture Offset Y á

G54 5-74 Set Fixture Offset #1 Y

G55 5-76 Set Fixture Offset #2 Y

G56 5-76 Set Fixture Offset #3 Y

G57 5-77 Set Fixture Offset #4 Y

G58 5-78 Set Fixture Offset #5 Y

G59 5-79 Set Fixture Offset #6 Y

G60 5-83 Set Acceleration Time Y

G61 5-83 Set Deceleration Time Y

G62 5-84 Set Profile Time Y

G63 5-84 Set Sinusoidal Acceleration Mode Y

G-code Commands U600 CNC Programming Manual

5-10 Aerotech, Inc. Version 1.1

Table 5-3. G-code and M-code Summary Con’t

G-code Page Description Modal Default

G64 5-86 Set Linear Acceleration Mode Y á

G65 5-86 Set Acceleration Rate for linear-type axes Y

G66 5-87 Set Deceleration Rate for linear-type axes Y

G67 5-87 Acceleration/Deceleration Time Based Y á

G68 5-88 Acceleration/Deceleration Rate Based Y

G70 5-89 English Programming Mode (in.) Y á

G71 5-90 Metric Programming Mode (mm.) Y

G82 5-90 Clear G92 (software home) Command n/a

G83 5-91 Mirror Y

G84 5-93 Rotate Y

G90 5-95 Absolute Programming Mode Y á

G91 5-96 Incremental Programming Mode Y

G92 5-97 Software Home (preset positions) n/a

G93 5-99 Inverse Feedrate Mode Y

G94 5-100 Normal Feedrate Mode Y á

G95 5-101 Feedrate per Spindle #1 Revolution Mode Y

G96 5-102 RPM Spindle #1 Feedrate Programming Y

G97 5-104 Constant Spindle Surface Speed Programming Y

G98 5-106 Rotary Feedrate Dominant Y

G99 5-107 Linear Feedrate Dominant Y á

G100 5-108 Disable spindle shutdown mode Y á

G101 5-108 Enable spindle shutdown mode Y

G108 5-109 No Deceleration to Zero Velocity (modal) Y á

G109 5-109 Deceleration to Zero Velocity (modal) Y

G110 5-110 Normal Circular Interpolation Y á

G111 5-111 Reverse Circular Interpolation Y

G112 5-112 Block Delete Mode ON Y

G113 5-112 Block Delete Mode OFF Y á

G114 5-113 Optional Stop Mode ON Y

G115 5-113 Optional Stop Mode OFF Y á

G116 5-113 Dry Run Mode Enabled Y

G117 5-113 Dry Run Mode Disabled Y á

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-11

Table 5-3. G-code and M-code Summary Con’t

G-code Page Description Modal Default

G130 5-114 4 Kilohertz Servo Update Rate Y á

G131 5-114 1 Kilohertz Servo Update Rate Y

G143 5-115 Activate Positive Cutter (Tool) Offsets Y

G144 5-116 Activate Positive Cutter (Tool) Offsets Y

G149 5-116 Deactivate Cutter (Tool) Offsets Y á

G150 5-117 Clear Scaling Factor Y á

G151 5-117 Set Scaling Factor Y

G153 5-119 Suspend All Fixture Offsets Y á

G165 5-120 Set Acceleration Rate for rotary-type axes Y

G166 5-120 Set Deceleration Rate for rotary-type axes Y

G212 5-121 Block Delete2 Mode ON Y

G213 5-121 Block Delete2 Mode OFF Y á

G295 5-101 Feedrate per Spindle #2 Revolution Mode Y

G296 5-102 RPM Spindle #2 Feedrate Programming Y

G300 5-123 Disable Multi-Block Look-Ahead Y á

G301 5-123 Enable Multi-Block Look-Ahead Y

G310 5-126 Disable High Speed Machining Y á

G311 5-126 Enable High Speed Machining Y

G360 5-127 Continue when Velocity Command Is Zero Y á

G361 5-127 Wait till In Position Y

G395 5-101 Feedrate per Spindle #3 Revolution Mode Y

G396 5-102 RPM Spindle #3 Feedrate Programming Y

G495 5-101 Feedrate per Spindle #4 Revolution Mode Y

G496 5-102 RPM Spindle #4 Feedrate Programming Y

I n/a (see section 3.3) n/a

J n/a (see section 3.3) n/a

K n/a (see section 3.3) n/a

M0 5-128 Program Stop n/a

M1 5-128 Optional Program Stop n/a

M2 5-128 End of Program n/a

 M3 5-129 Spindle #1 On Clockwise Y

M23 5-129 Spindle #2 On Clockwise Y

G-code Commands U600 CNC Programming Manual

5-12 Aerotech, Inc. Version 1.1

Table 5-3. G-code and M-code Summary Con’t

G-code Page Description Modal Default

M33 5-129 Spindle #3 On Clockwise Y

M43 5-129 Spindle #4 On Clockwise Y

M4 5-129 Spindle #1 On Counterclockwise Y

M24 5-129 Spindle #2 On Counterclockwise Y

M34 5-129 Spindle #3 On Counterclockwise Y

M44 5-129 Spindle #4 On Counterclockwise Y

M5 5-130 Spindle #1 Off Y á

M25 5-130 Spindle #2 Off Y á

M35 5-130 Spindle #3 Off Y á

M45 5-130 Spindle #4 Off Y á

M19 5-130 Spindle #1 Off/Reorient Y

M219 5-130 Spindle #2 Off/Reorient Y

M319 5-130 Spindle #3 Off/Reorient Y

M419 5-130 Spindle #4 Off/Reorient Y

M30 5-130 Reset to Beginning of Program and Wait for Cycle Start n/a

M41 5-131 Machine Lock Enabled Y

M42 5-131 Machine Lock Disabled Y á

M47 5-131 Restart Program Execution n/a

M48 5-132 Feedrate Override Lock Y

M49 5-132 Feedrate Override Unlock Y á

M50 5-132 Spindle Feedrate Override Lock Y

M51 5-132 Spindle Feedrate Override Unlock Y á

M97 5-133 Loop Over Near Call To Subroutine N n/a

M98 5-133 Loop Over Far Call To Subroutine N n/a

M103 5-134 Spindle #1 On Clockwise Asynchronously Y

M123 5-134 Spindle #2 On Clockwise Asynchronously Y

M133 5-134 Spindle #3 On Clockwise Asynchronously Y

M143 5-134 Spindle #4 On Clockwise Asynchronously Y

M104 5-134 Spindle #1 On Counter-Clockwise Asynchronously Y

M124 5-134 Spindle #2 On Counter-Clockwise Asynchronously Y

M134 5-134 Spindle #3 On Counter-Clockwise Asynchronously Y

M144 5-134 Spindle #4 On Counter-Clockwise Asynchronously Y

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-13

Table 5-3. G-code and M-code Summary Cont.

G-code Page Description Modal Default

N n/a Line Number N n/a

O n/a Program parameter (see section 3.3) n/a n/a

P n/a Program parameter (see section 3.3) n/a n/a

Q n/a Program parameter (see section 3.3) n/a n/a

R n/a Program parameter (see section 3.3) n/a n/a

S n/a Spindle Feedrate (see Section 3.3) Y n/a

T Tool Code

u n/a Axis Coordinate (see chapter 3) n/a n/a

U n/a Axis Coordinate (see chapter 3) n/a n/a

x n/a Axis Coordinate (see chapter 3) n/a n/a

X n/a Axis Coordinate (see chapter 3) n/a n/a

y n/a Axis Coordinate (see chapter 3) n/a n/a

Y n/a Axis Coordinate (see chapter 3) n/a n/a

z n/a Axis Coordinate (see chapter 3) n/a n/a

Z n/a Axis Coordinate (see chapter 3) n/a n/a

5.2. CNC Block Syntax

 This section describes the valid G-code block syntax. It provides an overview of the
G-code groups and their function. It does not provide detailed descriptions of the
command word functions (CNC words starting with G or M). The user must consult
Table 5-3 to find the page for a description of the functionality of the specific command
word. In order to understand this chapter, the reader must be familiar with the overall
structure of CNC programs (see Chapter 2: Commands) and the basic syntax for CNC
words, axis masks, axis points, and Expressions (refer to Chapter 3: Expressions).

5.2.1. CNC Blocks

SYNTAX: <GCodeBlock> is (<CNCWord>~)1<lineTerminator>

EXAMPLE: N03 G2 X7 Y8 z$GLOB5 F500

In general, G-code blocks are composed of consecutive CNC words, optionally separated
by spaces, ended with a line terminator. G-code blocks are sometimes called CNC blocks,
or CNC lines. Sometimes the term ‘wordset’, used below, simply indicates a G-code
block with no terminator.

The general syntax description above is inadequate, because of the many restrictions
based on the type of CNC words found in the block. The more specific syntax description
below attempts to breakdown CNC words by type, and their use.

G-code Commands U600 CNC Programming Manual

5-14 Aerotech, Inc. Version 1.1

SYNTAX: <GCodeBlock> is [[<nWord>]]~[[simpleModes]]~[[motionBlock]] or
[[<nWord>]]~<standAloneBlock> or
[[<nWord>]]~<paramSettingBlock>

EXAMPLES: N03 G2 X7 Y8 z$GLOB5 F500 ; a Motion Word set block
N03 G70 ; a Stand-alone block
N03 G4 F500 ; a Parameter setting block

Motion wordset blocks are the only type that cause motion. However, they do not always
cause motion, as the ‘G1’ Stand-alone blocks set modes. Parameter setting blocks assign
task, axis or machine parameters a given value.

5.2.2. N Words

SYNTAX: <nWord> is N~<integer>

EXAMPLE: N03

If used, N words must appear as the first word in the block. N words are ignored by the
UNIDEX 600 Series Controller, they are optional and may not be used as the target of a
jump statement. An exception to this is if the #MAKENCODESLABELS command is
used.

5.2.3. Motion Blocks

SYNTAX: <motionBlock> is

 [[<motionType>]]~[[axisPoint]]~[[offsetWordSet]]~[[<rateWordSet>]]

EXAMPLE: G2 X7 Y8 z$GLOB5 F500

Motion blocks are the basic unit used to generate motion. However, only the presence of
the axis point generates the motion. If the axis point is absent, there is no motion.

In general, the motionType indicates the kind of motion, the axisPoint the target, and the
rateWordSet the speed. The offsetWordSet is a special wordset used only in G2 / G3 type
motion.

Referencing the syntax above, a motion block can direct many actions on the same line.
The list below indicates the order of execution on the controller when multiple words are
on a line.

1. Simple Modes (includes M codes)
2. Rate Words (F, E and S codes)
3. Motion Modes
4. Motion Modifiers
5. Motion Types
6. Axis Points

This means that all feedrate adjustments and I/O settings in a block are guaranteed to
finish before the motion in the block (if any) occurs. It also means that the motion (the
axis points) executes last in the block.

For details on axis points, refer to Chapter 3: Expressions.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-15

5.2.3.1. Simple Mode Words

SYNTAX:

<modes> is <modesAccType> or <modesAbsRel> or <modesUnits> or
<modesAccMode> or <modesDomin> or <modesSpindleOff> or
<modesMotCont> or <modesCircDir> or <modesFeedOver> or
<modeSpindleOver> or <mCode> or <modeSpindleOver>

EXAMPLE: M1050 G90 G71 G48 G99

Modes are single CNC words that must appear before any other CNC word on the CNC
block, except the N word. They include M-codes and all G-codes that set modes, like the
Metric/English units mode. These always execute before any other command in the block.
There is no defined sequence of execution of modes with respect to each other.

All the modes, with the exception of M-codes, are paired, where the two codes perform
toggling or opposite functions as each other. The user cannot include more than one from
each pair in the same block. Shown below are the pairs.

<mCode> is M~<integer>
<modesFeedOver> is M48 or M49
<modesSpindOver> is M50 or M51
<modesUnits> is G70 or G71
<modesAccType> is G63 or G64
<modesAccMode> is G67 or G68
<modesAbsRel> is G90 or G91
<modesDomin> is G98 or G99
<modesSpindleOff> is G100 or G101
<modesMotCont> is G108 or G109
<modesCircDir> is G110 or G111

G-code Commands U600 CNC Programming Manual

5-16 Aerotech, Inc. Version 1.1

5.2.3.2. F, E and S Codes (Rate Words)

SYNTAX: <rateWords> is [[<Fword>~<Eword>~<Sword>]]
except: the order of the E, F and S words with respect to each other is irrelevant

<FWord> is E~<fExpression>
<EWord> is F~<fExpression>
<SWord> is S~[[[<integer>]]]~<fExpression>

EXAMPLES: E100 F($GLOB0+1)
S100
S[2]100

GENERAL:

Rate words specify speeds, or feedrates. The F specifies a feedrate for linear axes; E for
rotary (non-spindle) axes, and the S for spindle axes. The feedrate setting always takes
place before motion, if any, on the same CNC block. Feedrates are absolute values, and
do not have directionality (negative feedrates are illegal).

The user specifies feedrates via the F, E and S words, or, equivalently may use the task
parameters as shown below. The units of the F, E, and S words and the parameters
indicated below will vary, based upon the user units mode active and G93/G94/G95
settings. Actual speed during the move, may vary from the specified feedrate in a number
of cases, see the “Actual Feedrate” section below for details.

 The task parameters shown below provide more details.

F LinearFeedRate

E RotaryFeedRate

S S1 RPM, S2 RPM, S3 RPM, S4 RPM

The only difference between the feedrate words and their respective parameters, is that
the parameters can be set via the MMI600 parameters page, and saved to an .Ini file.
These values will then serve as the default feedrate values every time the MMI600 is
started.

S words apply only to spindle commands (M3, M4, M5). The E and F words apply only
in contoured moves (G1, G2, G3, G12, G13). In contoured (G1/G2 type) moves, all of the
speeds of each axis are coordinated so that all the axes complete their move at the same
time. Therefore, in a contoured move, even when moving multiple axes, the programmer
specifies only one feedrate, the vector feedrate, which the move follows. F and E words
do not apply to G0 moves, camming motion, spindle motion, or any other asynchronous
motion.

 square root of (X*X + Y*Y...)
 F word (user units/minute) = --
 duration of move

square root of (A*A+B*B…)
 E word (RPM) = --

 duration of move

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-17

Where, X,Y etc. are the individual velocities of each linear axis involved in the move,
and A,B etc. are the individual velocities of each rotary axis involved in the move.

The S, E, and F commands do not hold CNC program execution until the programmed
velocity has been accelerated to, that is the command completes “instantaneously.”

Order of execution of codes:

When an F, E T and/or S word is specified on the same line as a motion block, the F, E,
T, or S word is executed first. However, when a Simple Mode Word such as a G71, is on
the same line with an F, E, T, or S word, the Simple mode word is executed before the F,
E, T or S word. For example, if you are in G70 (inch mode) and execute:

G71 G1 X4 F100

The X axis will move to 4 millimeters, and will attain 100 millimeters/minute as its top
speed.

In general, codes will be executed in the following order, regardless of where they appear
on the line (note that some codes are forced to appear in certain positions on the line):

Simple mode words (G90, G70, M48...)

T words (T3)

F code (F4)

E code (E4)

S code (S3)

Motion modes (G0, G1, G2...)

Motion words (X4Y6)

User defined M codes(I/O) are an exception, in that are executed in the order they appear
in the line. For example:

M1000 G90 M1001 G1 X4 M1002

In the above line the M1000 is executed before the G1 move, the M1001, is executed just
after the G90, and the M1002 is executed the move.

Linear and rotary axes’ speeds are handled independently in contoured moves. If no
rotary axes are in a contoured move, then the E word has no effect; and similarly the F
word has no effect in contoured moves with no linear axes. If the contoured G-code move
involves the simultaneous movement of both rotary and linear axes, then the use of the E
and F words can be complex; because the controller can only obey one or the other of the
two words. Refer to the G98/G99 Overview for details on this special case.

G-code Commands U600 CNC Programming Manual

5-18 Aerotech, Inc. Version 1.1

The S word applies only to spindle motion (motion initiated by a M3 or M4). There is an
extra complication, due to the fact that there are four spindles on the UNIDEX 600. If you
say ‘S300’ for example, this refers always to spindle one (which axis is spindle one is
specified by the task parameter S1_Index). However, if you say ‘S[2]300’, you are
referring to the feedrate for spindle 2 (which axis is spindle two is specified by the task
parameter S2_Index). Note that the programmed S word values can be viewed in the task
parameters S1_RPM, S2_RPM etc. The actual spindle speed may vary from the
programmed rate, if the MSO value (task parameter MSO) is not one.

The F code word can also be used on the same line as, and following certain G codes,
to specify parameters related only to those G codes, for example, "G4 F.5". In these
cases the F code does not specify a feedrate, but specifies a parameter used by that
particular G code.

Actual Feedrates

The user can view the current programmed values of the F and E word in the task
parameters LinearFeedrate and RotaryFeedRate respectively. The user can view the actual
feedrate in the task parameters LinearFeedrateActual and RotaryFeedRateActual
respectively. In summary, the actual feedrate values can differ from the programmed
values in five cases:

1. The MFO (task parameter MFO) is not one.

2. Feedrate limiting is occurring due to an axis MaxFeedRateIPM (or
MaxFeedRateRPM) machine parameter.

3. Feedrate limiting by programmed acceleration is occurring

4. The contoured move involves both rotary and linear axes (see G98)

5. Feedrate limiting due to programmed acceleration limiting is occurring.

T Word:

This command loads a new tool, as specified by the fExpression. The specified tool must
be contained in the current toolfile, or the run time task fault: “Invalid tool specified.” is
generated.

SYNTAX: <Tword> is T~<fExpression >

EXAMPLES: T10

T($GLOB0+1)

Loading a tool consists of taking the data stored in the tool file for that tool, and
loading it into the appropriate tool parameters. In general, loading a tool does

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-19

not have any effect, until the program “leads on” to the part by executing the G
codes: G143, G144, G41, or G42. Also, note that the programmer must establish
the Tool axes with the G44 command, prior to loading the tool. Loading a tool
file assigns to at least the following parameters:

Tool radius

Tool length

Tool offsets

S and F feedrates

T words can be executed on the same line as F, E, and S codes and many other
G codes, however, be aware that if the tool specifies a required speed, then the F
or S word on that line, or any following line, will override that specification, as
defined by, the Order of execution of codes.

Tools must be numbered with non-zero positive integers. Specifying a tool word
with a number of 0, selects the “null tool.” The “null tool” has zero cutter
radius, zero tool length, and zero tool offsets. Specifying the null tool will not
restore old S and F feedrates that were current before the previous tool was
loaded.

Note: Only one tool can be active for all tasks

Linear and rotary axes’ speeds are handled independently in contoured moves. If no
rotary axes are in a contoured move, then the E word has no effect; and similarly the F
word has no effect in contoured moves with no linear axes. If the contoured G-code move
involves the simultaneous movement of both rotary and linear axes, then the use of the E
and F words can be complex; because the controller can only obey one or the other of the
two words. Refer to the Section 5.27 for details on this special case.

The S word applies only to spindle motion (motion initiated by a M3 or M4). There is an
extra complication, due to the fact that there are four spindles on the UNIDEX 600. If you
say ‘S300’ for example, this refers always to spindle one (which axis is spindle one is
specified by the task parameter S1_Index). However, if you say ‘S[2]300’, you are
referring to the feedrate for spindle 2 (which axis is spindle two is specified by the task
parameter S2_Index). Note that the programmed S word values can be viewed in the task
parameters S1_RPM, S2_RPM etc. The actual spindle speed may vary from the
programmed rate, if the MSO value (task parameter MSO) is not one.

The F code word can also be used on the same line as, and following certain G
codes, to specify parameters related only to those G codes, for example, "G4 F.5". In
these cases the F code does not specify a feedrate, but specifies a parameter used by
that particular G code.

G-code Commands U600 CNC Programming Manual

5-20 Aerotech, Inc. Version 1.1

ACCELERATION:

After an F or E word is executed, then an automatic acceleration/deceleration to the new
feedrate will begin with the next contoured move (G1/G2/G3/G12/G13) to occur. This
automatic acceleration/deceleration will follow the same parameters as the acceleration of
a contoured move up from zero speed. The automatic acceleration computed by the
trajectory generator, can in some cases, conflict with the feedrate specified by the user in
the CNC program.

After an S word, if the spindle is running, an acceleration/deceleration up to the new
speed begins immediately. The spindle acceleration/deceleration is determined by the G0
and Asynchronous motion acceleration parameters, which are the same for the M3
command.

FEEDRATE LIMITING:

Regardless of the F, E or S word setting, no individual axis speed can exceed the value in
the MaxFeedRateIPM machine parameter (or MaxFeedRateRPM machine parameter for
rotary type axes). The velocities of all the axes in the contoured move automatically scale
down so that no axis exceeds its maximum feedrate. If these parameters are zero, (this is
the default) then there will be feedrate limiting.

The user can view the current programmed values of the F and E word in the task
parameters LinearFeedrate and RotaryFeedRate respectively. The user can view the actual
feedrate in the task parameters LinearFeedrateActual and RotaryFeedRateActual
respectively. In summary, the actual feedrate values can differ from the programmed
values in four cases:

1. The MFO (task parameter MFO) is not one.

2. Feedrate limiting is occurring due to an axis MaxFeedRateIPM (or MaxFeedRateRPM
) machine parameter.

3. Feedrate limiting by acceleration is occurring

4. The contoured move involves both rotary and linear axes (see G98)

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-21

5.2.3.3. Motion Modifier Words

SYNTAX: <modNormal> is G20 or G21 or G22
<modCutter> is G40 or G41 or G42
<modVelocityBlend> is G8 or G9

<motionModes> is <modCutter> or <modNormal> or <modBlend>

EXAMPLE: G20 G41 G9

These serve as modifiers to the motion type. They include cutter compensation, normalcy,
and profile blending. Each of these three types has an overview explaining the modifiers
use.

5.2.3.4. Motion Type Words

SYNTAX: <motionType> is G0 or G1 or G2 or G3 or G12 or G13

EXAMPLE: G1

These codes direct a certain type of motion mode. They do not execute motion, they just
dictate the type of motion to execute by the axis points. If they (motion type words) are
modal, they not only affect the axis point on that block, but all those following until the
mode is changed.

Ellipses may be created via G1 CNC programming commands or via Camming.

5.2.3.5. Offset Words

SYNTAX:<offsetLetter> is I or J or K

<offsetWord> is (<offsetLetter>~<fExpression>)1

except: may not contain more than one word that uses the same CNC letter

EXAMPLE: I8.9 J(6+8) K($GLOB0)

I, J, K words specify the center coordinate of a circle and are used only in conjunction
with G2, G3, G12, or G13 motion G-codes. Offset words are always specified as relative
coordinates, regardless of the G90/G91 mode, measured relative to the current point.
Refer to the G2 command for more details on their use.

5.2.4. Stand-Alone Blocks

SYNTAX: <standAloneWord> is G17 or G18 or G19 or G27 or G28 or G29 or
G45 or G93 or G94 or G95 or G130 or G131

EXAMPLE: G17

Stand-alone words set modes. Refer to the section on the particular code for specifics on
that G-code.

G-code Commands U600 CNC Programming Manual

5-22 Aerotech, Inc. Version 1.1

5.2.5. Parameter Setting Blocks

Parameter setting blocks take one parameter. They usually set task, axis, or machine
parameters. The single parameter can be an F word, axis mask, or an axis point,
depending on the code.

5.2.5.1. F-code Parameter Blocks

SYNTAX: <FParamBlock> is <fCodeParamWord>~F<fExpression>
<FCodeParamWord> is G4 or G43 or G60 or G61 or G62 or

G65 or G66 or G129 or G165 or G166

EXAMPLE: G4 F5.6

These single parameter words set task or axis parameters. They must accompany an F
word that specifies the parameter value, or a mask specifying multiple values.

5.2.5.2. Mask Parameter Blocks

SYNTAX: <maskParamBlock> is [[<maskParamWord>~<CNCMask>]]
<maskParamWord> is G16 or G26 or G36 or G37or G39 or

G44 or G46or G53 or G82 or G83
G125 or G126 or G127 or G128

EXAMPLE: G16 X v z

Mask parameter blocks require a parameter specifying a set of axes. The user may specify
any number of axes. In most cases, the axis mask is optional and the axes are implied by
the context.

5.2.5.3. Point Parameter Blocks

SYNTAX: <pointParamBlock> is [[<pointParamWord>~<axisPoint>]]
<pointParamWord> is G34 or G35 or G38 or G54 or G92

EXAMPLE: G34 X3 v2.8 z$GLOB8

Point parameter blocks set axes or machine parameters for multiple axes simultaneously.
In most cases, the user may omit the axisPoint, and the axes are implied by the context.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-23

5.3. Non-Contoured Motion (G0)

5.3.1. Point-to-Point Positioning at a Rapid Feedrate (Motion) G0

SYNTAX: G0

EXAMPLE: G0 X4.5 Y0

The G0 command specifies axis movement for synchronous, non-contoured point-to-point
movement at the rapid traverse feedrate (machine parameter RapidFeedRateIPM, or
RapidFeedRateRPM for rotary type axes). The E and F keywords have no effect on G0
motion. G0 motion always decelerates to zero velocity, the G8 and G108 commands have
no effect. A G0 command moves each axis specified by the axis point at that axes rapid
traverse feedrate. No effort is made to coordinate the separate axes motion. Acceleration,
deceleration, ramp time, and type (of acceleration/deceleration) are specified separately,
by their axis parameters: ACCEL, DECEL, ACCELRATE, DECELRATE, ACCELMODE,
and DECELMODE.

The target values supplied are either relative or absolute units, dependant upon the G90 /
G91 mode. The user may specify G0 motion on either linear or rotary Type axes.

We strongly recommend that the user read Section 5.1.1 through Section 5.1.9,
before undertaking any motion from the CNC.

Typically, moves of this type are for operations similar to moving a tool to the workpiece
or moving a finished part out to the loader. To keep cycle time to a minimum, these
moves are usually performed as quickly as possible.

Although multi-axis moves of this type begin motion of all axes at the same time, all axes
may not finish at the same time (each axis may have a different rapid traverse feedrate
associated with it, along with a different target displacement). They do not produce
contoured motion.

The G0 command is a synchronous motion command, so the command does not complete
until all axes completes their motion.

EXAMPLE

G0 G90 X10. ; Moves to X10. using rapid traverse feedrate
G0 G91 X5. Y10. ; X5.0 and Y10.0 using rapid traverse feedrate

The G0 feedrate is limited to 100% MFO maximum.

G-code Commands U600 CNC Programming Manual

5-24 Aerotech, Inc. Version 1.1

5.4. Contoured Motion (G1, G2, G3)

5.4.1. Linear Interpolation (Motion) G1

SYNTAX: G1

EXAMPLE: G1 X1.2 Y2.3

The G1 command specifies synchronized, contoured linear motion. This differs from a
G0 type move, since all axes commanded to move, begin and end at the same time.

The target values supplied are either relative or absolute, based on the G90 / G91 mode.
The user may specify G1 motion on either linear or rotary Type axes.

Normally, the F word (or E word for rotary axes) determines the speed of the motion.
However, in complex motion where the rotary and linear axes move simultaneously, the
dominant Type of axes determines the E or F word used. Refer to the Section 5.27 for
details on this.

We strongly recommend that the user read Section 5.1.1 through Section 5.1.9,
before undertaking any motion from the CNC.

The acceleration/deceleration type used is defined by the current operational mode of
the Ramp Type and Accel Mode G-code groups.

Consecutive contoured moves may be blended together.

EXAMPLE PROGRAM:

G91 G70 G1 X4.0 Y3.0 F50. ; A straight line will be produced from the current
; position to the X=4.0, Y=3.0 coordinate position,
; at a feedrate of 50 inches per minute.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-25

5.4.2. Circular Interpolation CW on Coordinate System #1 (Motion) G2

SYNTAX: G2~<EndingPoint>~<CenterPoint>

EXAMPLES: The 4 examples below are alternate specifications of the same circular
arc, which is shown in Figure 5-1 (examples assume G17, and starting point of {.5,3}).

G91 G2 X2 Y-2 I.5 J-1.5 ; End Point and circle center specified (IJK
; method)

G91 G2 X2 Y-2 R1.58114 ; End Point and radius specified (R method)

G91 G2 P108.435 Q-18.435 R1.58114 ; Angles and radius specified (PQ Method and
; R method)

G91 G2 Q-18.435 I.5 J-1.5 ; Ending angle and circle center (Q Method
; and IJK method)

The G2 command generates synchronous, contoured motion that produces a clockwise
(CW) circular arc by the coordinated motion of two axes (see Figure 5-1). Viewing the
axes plane from the negative direction of a perpendicular axis (per the right hand rule),
the arc direction is clockwise. Use G3 to generate counterclockwise motion on coordinate
system #1. The axes specified in the <EndingPoint> must be linear Type axes. The F
word determines the velocity. When an F word is specified on the same line as a G2, G3,
G12 or G13 command, the F word is executed first.

EXAMPLE PROGRAM:
G16 X Y Z ; Coord1I=X, Coord1J=Y, Coord1K=Z (Default)
G17 ; Coord1Plane={Coord1I,Coord1J} (Default)
G90 ; Absolute programming mode
G1 X.5 Y3
G2 X2.5 Y.5 I1 J-1.5 ; FOLLOWS PATH SHOWN IN Figure 5-1

; Starting coordinate = {.5, 3}
; Ending coordinate = {2.5, 1}
; Center coordinate = {1, 1.5}

�

�

�

� � �

<

;

Figure 5-1. CW Circular Interpolation

G-code Commands U600 CNC Programming Manual

5-26 Aerotech, Inc. Version 1.1

Clockwise and Counter-Clockwise Circular Axis Plane

By default, this command will produce circular motion in the X and Y axis plane as
shown in Figure 5-1. However, this command can produce motion in any one of three
planes (see Figure 5-2 and Figure 5-3), where, each plane is defined by two of the three
axes of the coordinate system. The three axes of coordinate system #1 and #2 are defined
by the G16 and G26 commands, respectively. The 2 axis plane that is used within
coordinate system 1 and 2, is selected by the G17/G18/G19 and G27/G28/G29
commands, respectively.

Figure 5-2. Orientation of a G2, in various planes in Coord. System #1

Figure 5-3. Orientation of a G3, in various planes in Coord. System #1

Circular Speed

Normally, the F key word determines the vectorial speed of the axes. However, the E or F
key word alone may determine the axis component speeds in complex cases where the
user moves rotary and linear type axes simultaneously. Refer to the G98 G code for more
details on this situation. However, in some cases Feedrate Limiting or the
BlendMaxAccelCircleIPS2 task parameter may reduce the vectorial speed. When an F
word is specified on the same line as a G2, G3, G12 or G13 command, the F word is
executed first.

G17

J

 I

G18

I

 K

G19

K

 J

G17

J

 I

G18

I

 K

G19

K

 J

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-27

Circular Starting and Ending Points

The G2 / G3 / G12 / G13 arc always starts at the current position and ends at the
<EndingPoint>. The ending point may be specified in two distinct ways; explicitly by X
Y Coordinates or by an angle (PQ method).

X Y Coordinate Circular Ending Point

Normally, the ending point of an arc is explicitly specified within the CNC block, similar
to G1 moves (See the first and second examples, in the G2 command, section 5.4.2). If
G90 mode is active, the ending point coordinates are interpreted as absolute coordinates,
if G91 mode is active, the ending point coordinates are interpreted as relative. If the
ending point is specified by X Y coordinates (or the two axes generating the circular
motion), one or both of the target values may be omitted, using the default circular values.
If the ending position is equal to the current position, a 360° circle is produced.

PQ Method and Q Method

The user has the option of not specifying the ending position as an X Y coordinate, but,
instead specifying the absolute starting angle (P Word) and ending angle (Q Word) of the
arc. Each of these absolute angles are measured counter-clockwise, from a line drawn
through the center point running parallel to the X axis (see Figure 5-4, also, see the third
and fourth examples, in the G2 command, section 5.4.2).

Starting Angle (P Word)

The absolute starting angle is specified via the P Word, in degrees. The modulo value
of the angle specified will be used to create a value between 0 and 360 degrees.

Ending Angle (Q Word)

The absolute ending angle is specified in the Q word, in degrees.

X

Y

•
Q = -30 °, or 330 °

P = 120 °

0°

90°

180°

NOTE: P and Q values will be
same for G2s and G3s.

Figure 5-4. PQ Method Example

G-code Commands U600 CNC Programming Manual

5-28 Aerotech, Inc. Version 1.1

The Center Point

The radius and center of the circle can be defined in two distinct ways: by “IJK” codes, or
by “R” codes. The “IJK” method is the original RS-274 CNC standard, but the newer R
method offers the following advantages:

1. Specifying R is simpler and less confusing.

2. Specifying R avoids the possibility of radius errors (see below).

However, there are disadvantages:

1. The R method cannot be used to specify 360-degree arcs.

2. You must use negative radii values to perform arcs from 180 to 360 degrees.

Circular Radius “R” Method

The R code specifies the radius of the circle. However, this does not specify which of the
two possible center points, when used with the X Y coordinates of the desired endpoint,
as shown below. The sign of the radius specifies this. If the radius is positive, the
controller will generate the shorter arc (always 180 degrees or less). If the radius value is
negative it will generate the longer arc (always between 180 degrees and 360 degrees).
See Figure 5-5. There are some start/endpoint/radius combinations where both the
negative and positive radius values will produce the same 180 degree arc. You cannot use
the R word to specify a 360 degree arc, or a fault will be generated.

;

Y

Negative Radius

Positive Radius

Figure 5-5. “R” Method Example

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-29

“IJK” Method

The user must define the radius of the arc by specifying the offsets to the center point of
the circle, in an offset block, using the two appropriate I , J or K offset specifiers. The
offsets are always specified relative to the current position, regardless of the G90/G91
mode. The IJK method, unlike the R method, can result in plane errors and radius errors,
if specified inaccurately.

The I , J and K keywords always refer to the axes specified by the coordinate task
parameters:

Coordinate System #1: Coord1I, Coord1J and Coord1K task parameters, set via G16.

Coordinate System #2: Coord2I, Coord2J, and Coord2K task parameters, set via G26.

Refer to the circular starting and ending points and this command’s example programs for
more clarification of this complex issue.

Circular Plane Errors

Plane errors can occur, if the center point is being specified by the IJK method. The I, J
and K keywords always refer to the axes specified by the coordinate task parameters:

Coordinate System #1: Coord1I, Coord1J and Coord1K task parameters, set via G16.

Coordinate System #2: Coord2I, Coord2J, and Coord2K task parameters, set via G26.

The user must supply two axes to specify the endpoint, as well as two offsets to specify
the center. If the axes names provided in the ending point do not match the axes inferred
by the I/J/K offset values provided, a plane error occurs.

Circular Radius Errors

Radius errors may occur, if the center point of an arc (G2 / G3) is being specified by the
IJK method. These may be due to rounding or limited precision of the calculations, such
as from a CAD package. When using the IJK method, the controller verifies that the
current point and end point are equidistant from the center point. The distance between
the center point and the current position must be equal to the distance between the ending
position and the center point (within the tolerance defined by the MaxRadiusError task
parameter). If this condition is not true, the controller generates a ‘Radius Error’ fault.

If the radius and two endpoints do not agree, but fall within the MaxRadiusError
tolerance, the controller will re-compute a new center point for the arc, which is as close
as possible to the specified center point, and also having an equal radius for the starting
and ending points.

Users of CAD software packages who encounter the Radius Error Fault can easily resolve
this problem by having the CAD software package output a greater number of decimal
places or by adjusting the MaxRadiusError task parameter, or by having the CAD
package output arcs with the R method. Also, you may set the MaxRadiusError task

G-code Commands U600 CNC Programming Manual

5-30 Aerotech, Inc. Version 1.1

parameter to –1. This will disable circular radius error messages, causing the controller to
recalculate the center point, as required.

Prior to version 6.103, the controller handled this situation differently, assuming the
ending point to programmed center point as the radius, and “jumped” to the starting
point necessary to satisfy this radius. For backward compatibility, this functionality
may be reinstated by setting bit 2 of the CompatibilityMode task parameter. See the
MaxRadiusAdjust task parameter also.

• arc starting point

• arc ending point

• arc center point (specified in program)

• arc center point (recalculated)
Arc after adjustment

Arc as programmed (no
adjustment made)

“ jerk” move, occurs only
on unadjusted arc. (see

note above)

Figure 5-6. Circular Radius Example

Imprecision of Target Values

Many CNC programs are generated by CAD/CAM packages. These software packages
only output values out to a certain number of digits, yielding imprecision in the motion.
For example:

N01 G91 G70 ; inches, relative coordinates
N02 G1 X1 Y1
N03 G2 X2.6666 Y0 I1.3333 J-1.3333

The intent here is to generate motion at a 45° angle to {1,1}, then a 90° arc of 1 and 1/3
inch radius, that begins tangential to the 45° move. However, due to limited precision, (to
be perfectly accurate the values given for X, J, and I should be carried out to an infinite
number of places, i.e. 1.333333333…), the circle will not be correct. This imprecision
may cause three problems:

1. The arc radius as measured from the start point, will be different then that
measured from the end point possibly producing a circular radius error.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-31

2. The arc will not be exactly tangential to the line (this may cause jerking if the
Normalcy mode is active).

3. The arc will not be exactly tangent to the line (this may cause link arc
degenerates to line error, jerking or motion queue starvation if Cutter
Compensation is active).

In all three cases the controller provides parameters that may be adjusted, allowing small
imprecision errors to be ignored.

MaxRadiusError - errors in starting/ending positions of G2 / G3 moves

NormalcyToleranceDeg - errors in tangency between moves, as it relates to
Normalcy mode

CutterToleranceDeg - errors in tangency between moves, as it relates to Cutter
Compensation

Correcting Circular Radius Errors

There are a number of solutions for circular radius errors. The preferred solutions are 1 or
2, since they fix the problem rather than "work around" it. If you use solution 3 or 4, then
the program will readjust your circle, as discussed after the list.

1. Use the R method instead of the IJK method for specifying the circle. In this
method you specify the target point of the arc, and the radius of the arc. For
example "G2 R5 X10" as opposed to "G2 I5 X10". In the R method you can
never get a circular radius error because you are not over-specifying the
problem. There are some considerations in the R method for performing arcs
subtending angles more than 360 degrees, please see the U600 help file under
"Circular Radius Method" (use the Index) for details.

2. Force your CAD "post-processor" to produce higher precision in its outputs, i.e.;
output more decimal places. This applies to the I, J, K as well as to the X and Y
coordinates.

3. Raise the MaxRadiusError task parameter so that the program "accepts" these
limited precision coordinates without generating an error.

4. Set the MaxRadiusError task parameter to -1, to avoid all radius errors.
However, this is dangerous, as errors in the CAD post-processor will no longer
be detected.

If you use solutions 3 or 4 above, the program will "change" the arc center so that it no
longer contradicts the endpoint/startpoint. It changes it by moving the center the shortest
possible distance it can, that fits the endpoint/startpoint.

G-code Commands U600 CNC Programming Manual

5-32 Aerotech, Inc. Version 1.1

• A

• B

• C

•
C*

m

Figure 5-7. Arc Center Change

If the user is at point A, and moves to point B along an arc, but specifies the erroneous
point C as the center, the program will compute (assuming a circular radius error is not
generated) a new center point C* as shown below. Note, that all legal centers to the arc lie
on the line m, which lies perpendicular to line segment AB, and bisects segment AB. The
center chosen (C*) lies on line m, such that the segment C* is perpendicular to m.

Defaults

The controller supplies a default value of zero for any offset omitted from the CNC
program block. The controller supplies a default value equal to the current position for
any target omitted from the CNC program block. The CNC program block must have at
least one offset value, and need not have any target values. However, omitting targets or
offsets, makes the CNC program more difficult to read, since the default value is based on
the G16 and G17/G18/G19 active modes.

See the code fragment below, which assume a starting position of {X=4, Y=4} G17, G16
X Y Z:

G2 G90 X6.0 Y4.0 I1.0 ; Same as G2 G90 X6.0 Y4.0 I1.0 J0.0
G2 G90 X6.0 I1.0 ; Same as G2 G90 X6.0 Y4.0 I1.0 J0.0
G2 G90 I-2.0 ; Same as G2 G90 X4.0 Y4.0 I-2.0 J0.0

Helixes and Dual Circular Motion

To produce helical interpolation it is necessary to program two axes to generate circular
interpolation and a third axis to generate linear interpolation. This is accomplished by
specifying a G2 / G3 (or G12 / G13) and a G1 on the same line.

Also, the user can specify two circles to execute simultaneously (on four different axes)
via the second coordinate system G12/G13 circular commands. However, in this case the
F feedrate determines the velocity for the circular motion in both coordinate systems.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-33

To produce a helix or dual circular motion, the G codes and their associated
parameters must be grouped together, as follows:

G1 Z5. G2 X1. Y. I1 J0. F100. ; Helical motion

G2 X1. Y1. I1. J0. G13 x1. Y1. I1. J0. F100 ; Dual circular motion

In other words, the parameters to the G1 command must follow the G1 command, the
parameters to the G2 command must follow the G2 command, the parameters to the G13
command must follow the G13 command, etc.

EXAMPLE PROGRAM:
Here are some examples to help clarify the G16/G17 type options
;
G2 X1 Y1 I5 J6 ; This is OK
G2 U1 V1 I5 J6 ; INVALID SYNTAX: neither U nor V is one of the Coord1 axes
G16 U A B ; Change: Coord1I=U, Coord1J=A, Coord1K=B
G2 U1 A1 I5 J6 ; Corrected: U and V are now Coord1I and Coord1J, respectively
G16 A U B ; Switch around U and A axes: Coord1I=A, Coord1J=U, Coord1K=B
G2 U1 A1 I5 J6 ; Still OK, but now the I is for A axis, J is for U axis
G16 X Y Z ; Change back to default: Coord1I=X, Coord1J=Y, Coord1K=Z
G19 ; But change Coord1Plane to {Coord1J, Coord1K}
G2 X1 Y1 I5 J6 ; INVALID SYNTAX: I is no longer in coordinate 1 plane.
G2 X1 Y1 I5 K6 ; Corrected: note that now J,K must be used (J,K still match

; to the X,Y axes since no change in G16 setting)

G-code Commands U600 CNC Programming Manual

5-34 Aerotech, Inc. Version 1.1

5.4.3. Circular Interpolation CCW on Plane #1 (Motion) G3

SYNTAX: G3~<Ending Point>~<Center Point>
except: the user must supply 2 axis letters, and 2 offset letters

EXAMPLE: G3 X5 Y5 I-5 J0 ; Execute a CCW circle

A G3 command generates a counterclockwise (CCW) arc and in every other respect is
identical to a G2 command. Refer to the G2 description for all other details on the G3
command. Compare Figure 5-8 with Figure 5-1 under the G2 command description.

EXAMPLE PROGRAM:

G90 G3 X.5 Y3 I0 J-2 ; Starting coordinate = {.5,3}
; Ending coordinate = {2.5,1}
; Center coordinate = {.5,1}

 Y
 3

 2

 1

 3 2 1
 X

Figure 5-8. CCW Circular Interpolation

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-35

5.5. Dwell (G4)

5.5.1. Dwell G4

This command causes a delay in program execution. The duration of the delay must be
specified in seconds using the F keyword. The resolution of the delay is 0.001 seconds or
1 millisecond.

Use the WAIT statement to cause a delay based on a condition.

SYNTAX: G4 F<fExpression> ; where the expression is the time in seconds

EXAMPLE PROGRAM:

G4 F5. ; Dwell 5 seconds

5.5.2. Asynchronous Dwells

Users are recommended to use the G4 command for dwells, however, advanced CNC
programmers may require asynchronous dwells. That is, execute a dwell (on the same
task) while executing other CNC program lines. This technique also allows you to dwell
until a condition is satisfied, rather than dwell a particular time. This may be
accomplished as in the following CNC program fragment.

; The following CNC program will set an output via M5000, dwell approximately 15
milliseconds,
; then, clear the output, within the subroutine labeled EVAL.

DVAR $TIME_DELAY
$TIME_DELAY = 15 ; milliseconds

M5000 = 1 ; set output
CLOCK.X = 0 ; clear 1 msec. timer
ONGOSUB(CLOCK.X > $TIME_DELAY) FARCALL "" EVAL ; "" implies current program

;
; Rest of program here
;

ENDWHILE
M2

EVAL:
M5000 = 0 ; clear output
ONGOSUB CLEAR(CLOCK.X > $TIME_DELAY)
RETURN RETURNTYPE_START

G-code Commands U600 CNC Programming Manual

5-36 Aerotech, Inc. Version 1.1

5.6. Velocity Blending (G8, G9, G108, G109)

G8 and G9 relate to how the controller behaves when two consecutive contoured CNC
motion blocks (G1, G2, G3, G12 or G13) execute consecutively. The controller, by
default, blends two contoured G-code moves together, smoothly accelerating or
decelerating to the new speed between the two moves. G8 and G9 can alter this behavior.
G9 forces the controller to decelerate to zero (obeying the deceleration settings detailed
in G60-G68) at the end of the block that the G9 appears. G8 forces the
acceleration/deceleration to the new speed to be instantaneous (the G60-G68 accel/decel
settings are not obeyed).

The G8 and G9 commands only apply to the block in which they appear. Refer to
G108/G109 to perform the G9 action modally. The G8 action cannot be performed
modally. However, the AccelTimeSec, DeclTimeSec, AccelRateIPS2, and DecelRateIPS2
task parameters could be changed providing a modal G8 mode. A G8 must be included
on every block if instantaneous acceleration/deceleration is desired on every block. Refer
to Figure 5-9 for all G8 and G9 velocity profile combinations.

G8 and G9 have no effect on G0 or asynchronous moves. The controller always
decelerates smoothly to zero velocity between G0 moves.

EXAMPLE PROGRAM:
G91 G68 ; Relative coordinates, linear accel/decel
G1 X10 F10 ; Move 1, (default) blends with accel to move 2
G1 X10 F20 G9 ; Move 2, forces decel to zero at end of move
G1 X10 F10 G8 ; Move 3, instantaneous accel and decel
G1 X10 F20 G8 G9 ; Move 4, instantaneous accel, force to zero decel

 X
 Velocity

20

 10

 Move 1

 10

 Move 2

 20

 Move 3

 30

 Move 4

 40

Figure 5-9. G8 and G9 Velocity Profile

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-37

Instantaneous Accelerations and Decelerations

Instantaneous accelerations/decelerations during transitions between contoured (G1, G2,
G3 commands), blended (see G9) moves can occur in some circumstances, despite the
accelerations and decelerations defined by the user.

Three typical causes of this are:
Corners
Direction Reversals
Exiting Constant Velocity Mode

Corners

Attempting constant velocity around the corners (90 degree angles) of a part may
cause instantaneous accelerations. Examine the following code fragment, where X
and Z are linear axes.

G108 ; Enforce automatic velocity blending
G90 G0 X0 Z0 ; Goto {0,0}; use absolute coordinates from now on
G1 X100 Z0 F100 ; X at 100 units/sec, Z does not move.
G1 X200 Z100 F141.4 ; X at 100 units/sec, Z at 100 units/sec

The controller will not decelerate in between the two moves (no G9 specified); so the
X axis travels at 100 units/min. at the instant the second move begins. This means
that the Z axis must also be 100 units/min. at that instant, in order for the two axes to
finish at the same time. However, in the last instant (the end of the first move) the Z
axis was not moving. This results in an instantaneous velocity change of the velocity
command of the Z axis. This instantaneous velocity change will take place in 1
millisecond, resulting in a very high acceleration.

There are only three viable alternatives to instantaneous accelerations, such as
corners or direction reversals.

Exiting Constant Velocity Mode

Instantaneous deceleration may occur in the constant velocity mode. Examine the
following example.
 G90 G0 X0 Z0 ; Goto {0,0}; use absolute coordinates from now on
 G1 X100 F100 ; X at 100 units/sec
 G1 X1 F100 ; X at 100 units/sec
 G4 F.5

Instantaneous deceleration may occur at the end of a sequence of blended moves.
There is no deceleration at the end of each move, except for the last move in the
sequence. However, if the last move specifies a very short distance, relative to the
velocity, then the controller does not have time to generate the specified deceleration.
It must apply a deceleration that brings it to the specified target from the speed
achieved in the last move. This can result in deceleration much faster than specified
by the user and can generate nearly instantaneous deceleration.

G-code Commands U600 CNC Programming Manual

5-38 Aerotech, Inc. Version 1.1

Direction Reversals

Changing the direction of motion of an axis while in the constant velocity mode may
cause instantaneous accelerations.

G108 ; Enforce automatic velocity blending
G91 ; Use relative coordinates
G1 X100 F100 ; X moving in positive direction
G1 X-100 F100 ; X moving in negative direction

Eliminating Instantaneous Accelerations and Decelerations

Direction reversals or instantaneous acceleration/deceleration, causing axis jerking, can
easily occur when in G108 mode and there is no G8 or G9 on the line. There are only
three viable alternatives for instantaneous accelerations and decelerations, such as corners
or direction reversals.

Decelerate to a stop in between the moves (i.e., place a G9 on the line, or use G109
mode). However, this will take significantly longer to execute the move.

Accelerate the axis up as quickly as possible starting at the beginning of the second move,
without altering the first axis speed (Use G23 or VELTIMECONST). However, this means
the path will not be a sharp corner, it will be ‘rounded’.

The controller can automatically decelerate like the G9 command, which is activated by
the BlendMaxAccelLinearIPS2 (or BlendMaxAccelRotaryDPS2 for rotary axis) task
parameter.

It is by no means clear which of these solutions is preferable, it depends on the
application. So the controller leaves it up to the user to decide. If solution 1 is desired, the
user must add a G9 to the first G1 CNC program block.

Solution 2 can be accomplished with the G23 command (or the VELTIMECONST axis
parameter). If neither of these solutions may be applied, then the velocity command will
make an instantaneous change. However, it is clear that the actual velocity change will
never be instantaneous, but will be limited by the mechanics of the system. So, if neither a
G9 nor the VELTIMECONST parameter is used by the programmer, then the mechanics
imposes a form of solution 2, however, the rapid acceleration change will most likely
affect part quality and or generate RMS current or position error faults.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-39

5.6.1. Instantaneous Acceleration G8

SYNTAX: G8

This command causes the axis to accelerate to the new velocity instantaneously, at the
beginning of a contoured move (G8 applies only to G1, G2, G3, G12, and G13 moves).
Figure 5-10 displays the velocity profile with the G8 command. Without this command,
acceleration is performed based upon the current settings of the ACCELMODE and ramp
type operational modes (G60 through G68). G8 applies only to contoured motion. A G8
must be on every CNC line if instantaneous acceleration/deceleration is desired on each
line. If the user desires a modal G8, they must set the AccelTimeSec, DecelTimeSec,
AccelRateIPS2, and DecelRateIPS2 task parameters to zero for all axes.

The acceleration can not occur in a time period less than the value specified by the
UpdateTimeSec task parameter.

EXAMPLE PROGRAM:

G90 G1 G8 X1. F100.
G90 G1 X1 F200.
G90 G1 X1 F100.

 Velocity

Time

100

 200

Figure 5-10. Velocity Profile with G8

If a move executing in the G8 mode is placed into the feedhold mode, the
deceleration to zero is instantaneous. The same applies to MFO adjustments during a
G8 mode move.

G-code Commands U600 CNC Programming Manual

5-40 Aerotech, Inc. Version 1.1

Forced instantaneous acceleration, even while a G8 is not active, may occur under
some circumstances. See Corners for more information.

5.6.2. Force Deceleration G9

The G9 command forces the axes to decelerate to zero velocity at the completion of a
contoured move (G9 applies only to G1, G2, G3, G12, and G13 moves). Figure 5-11 and
Figure 5-12 give a comparison of the velocity profile with and without G9. The
subsequent moves then accelerate from zero velocity to the commanded feedrate. This
command is not modal. For the equivalent modal command, see the G109 command. The
following example illustrates the effect of this command upon a sequence of motion
blocks.

SYNTAX: G9

EXAMPLE PROGRAM: Velocity profile without G9

G91 ; Incremental positioning mode
F60. ; Set the vector feedrate to 60
G1 X1. ; Move the X axis 1.0
F120. ; Set the vector feedrate to 120
G1 X2. ; a second time 2.0
F60. ; Set the vector feedrate to 60
G1 X1. ; and another move of 1.0
G4 F1. ; Dwell for 1 second
G1 X1. ; This move will have an acceleration, because a G4 preceded it

 Velocity
 120

 60

 Time 5 Sec 4 Sec 3 Sec 2 Sec 1 Sec

Figure 5-11. Velocity Profile Without G9

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-41

EXAMPLE PROGRAM: Velocity profile with G9
G91 ;Incremental pgm. mode
F60. ; Set the vector feedrate to 60
G1 G9 X1. ; Move the X axis 1.0
F120. ; Move at a Velocity of 120
G1 G9 X2. ; a second time 2.0
F60. ; Set the vector feedrate to 60
G1 G9 X1. ; and another move of 1.0
G4 F1. ; Dwell for 1 second
G1 X1. ; Move 1.

Velocity
120

 60

 1 Sec
 Time

 4 Sec 2 Sec 5 Sec 3 Sec

Figure 5-12. Velocity Profile with G9

When executing a return move (from jog and return) the controller always
decelerates to zero before resuming the move (if any) that was interrupted by the jog
and return.

5.7. Contoured Motion on Coordinate System # 2 (G12, G13)

G12 and G13 produce circles just like G2 and G3, but on Plane #2. This allows the
programmer to produce simultaneous circular motion on two planes.

5.7.1. Circular Interpolation CW on Coordinate System #2 (Motion) G12

SYNTAX: G12~<axisPoint>~<offsetBlock>

EXAMPLES: The 4 examples below are alternate specifications of the same circular
arc, which is shown in Figure 5-1 (examples assume G27, and starting
point of {.5,3})

G91 G12 X2 Y-2 I.5 J-1.5 ; CW, target+circle center specified (IJK method)
G91 G12 X2 Y-2 R1.58114 ; CW, target+radius specified (R method)
G12 P101.31 Q-11.31 R1.58114 ; CW, angles+radius specified (PQ and R method)
G12 Q-11.31 I.5 J-1.5 ; CW, angles+circle center (IJK and Q method)

G-code Commands U600 CNC Programming Manual

5-42 Aerotech, Inc. Version 1.1

The G12 command generates contoured synchronous motion, that produces a Clockwise
(CW) circular arc by the coordinated motion of two axes in coordinate system #2, see
Figure 5-2 and Figure 5-3. Viewing the axes plane from the negative direction of a
perpendicular axis (per the right hand rule), the arc direction is clockwise. Use G13 to
generate counterclockwise motion on coordinate system #2. The axes specified in the
<axis point> must be linear Type axes. The F word determines the velocity. When an F
word is specified on the same line as a G2, G3, G12 or G13 command, the F word is
executed first.

The G12 command provides the programmer the ability to generate two circular motions
simultaneously. This is accomplished by programming a G12 /G13 on the same line as a
G2/G3. The F feedrate would specify the feedrate for both circles.

Refer to the task parameters Coord1Plane and Coord2Plane, for more details on how to
define the axes planes.

5.7.2. Circular Interpolation CCW on Coordinate System #2 G13

SYNTAX:G13~<axisPoint >~<offsetBlock>

EXAMPLES: The 4 examples below are alternate specifications of the same circular
arc, which is shown in Figure 5-1 (examples assume G27, and starting point of {.5,3})

G91 G13 X2 Y-2 I.5 J-1.5 ; CCW, target+circle center specified (IJK method)
G91 G13 X2 Y-2 R1.58114 ; CCW, target+radius specified (R method)
G13 P101.31 Q-11.31 R1.58114 ; CCW, angles+radius specified (PQ and R method)
G13 Q-11.31 I.5 J-1.5 ; CCW, angles+circle center (IJK and Q method)

The G13 command generates contoured synchronous motion, that produces a Counter-
Clockwise (CCW) circular arc by the coordinated motion of two axes in coordinate
system #2, see Figure 5-2 and Figure 5-3. Viewing the axes plane from the negative
direction of a perpendicular axis (per the right hand rule), the arc direction is counter-
clockwise. Use G12 to generate clockwise motion on coordinate system #2. The axes
specified in the <axis point> must be linear Type axes. The F word determines the
velocity. When an F word is specified on the same line as a G2, G3, G12 or G13
command, the F word is executed first.

The G13 command provides the programmer the ability to generate two circular motions
simultaneously. This is accomplished by programming a G12 /G13 on the same line as a
G2/G3. The F feedrate would specify the feedrate for both circles.

Refer to the task parameters Coord1Plane and Coord2Plane, for more details on how to
define the axes planes.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-43

5.8. Coordinate System #1 Configuration (G16 – G19)

Coordinate System #1 is used only in context with the G2 and G3 commands and
determines the axes comprising the first coordinate system (#1) XYZ plane where G2 or
G3 will produce circular motion.

5.8.1. Assign Coordinate System #1 Axes G16

SYNTAX: G16~<axisMask>
except: the user must supply exactly 3 axis letters (order of the letters is

significant).

EXAMPLE: G16 u v w

This G-code is equivalent to assigning to the task parameters: Coord1I, Coord1J and
Coord1K simultaneously. These task parameters and G16 are used only in the context
with G2 or G3 commands. Coord1I is assigned to the first axis in the mask, Coord1J is
assigned to the second axis in the mask, and so on.

By default:
Coord1I is 0 (X task axis)
Coord1J is 1 (Y task axis)
Coord1K is 2 (Z task axis)

The order of the axes in the axis mask is significant, because it determines the
mapping of the I, J, K. For example, “G16 X Y Z” is different than “G16 Z Y X.”

Refer to the example programs for G17, G18, and G19 for a better understanding of the
complex issues surrounding G16.

G-code Commands U600 CNC Programming Manual

5-44 Aerotech, Inc. Version 1.1

5.8.2. Plane Selection Codes Set # 1 G17/G18/G19

SYNTAX: G17 or G18 or G19

EXAMPLE: G17

These G-codes are equivalent to assigning to the task parameter Coord1Plane. This task
parameter and G17, G18, G19 are used only in the context with G2 or G3 commands.

G17 selects Plane 1, G18 selects Plane 2, and G19 Plane 3 (see Figure 5-13). Reference
the example program below.

EXAMPLE PROGRAM:

G16 X Y Z ; Coord1I=X, Coord1J=Y, Coord1K=Z (this is the default)
G17 ; Coord1Plane={Coord1I, Coord1J} (this is the default)
G2 X1 Y1 I5 J6 ; This is OK
G2 U1 V1 I5 J6 ; INVALID SYNTAX: neither U nor V is one of the Coord1 axes
G16 U A B ; Change: Coord1I=U, Coord1J=A, Coord1K=B
G2 U1 A1 I5 J6 ; Corrected, U and A now Coord1I and Coord1J, respectively
G16 A U B ; Switch around U and A axes, Coord1I=A, Coord1J=U, Coord1K=B
G2 U1 A1 I5 J6 ; Still OK, but now the I is for A axis, J is for U axis
G16 X Y Z ; Change back to default: Coord1I=X, Coord1J=Y, Coord1K=Z
G19 ; But change Coord1Plane to {Coord1J, Coord1K}
G2 X1 Y1 I5 J6 ; INVALID SYNTAX: I is no longer in coordinate 1 plane.
G2 X1 Y1 J5 K6 ; Corrected, note that now J, K must be used (J, K still match

; to the X, Y axes, since no change in G16 setting)

Coord1I

Coord1I

Coord1I -
Coord1J

Coord1J -

Coord1K -

Coord1J

Coord1K

Coord1K

Plane #1--G17

Plane #3--G19

Plane #2--G18

Figure 5-13. Coordinate System 1 (Clockwise or G2 motion)

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-45

5.9. Normalcy Motion Overview (G20, G21, G22)

Certain types of cutting tools require their orientation be perpendicular (normal) to the
part being cut. Such tools typically mount to a rotary axis so that the orientation of the
tool may be changed as the position of the part changes. Normalcy motion is generated
from the commanded position (not feedback) of the Normalcy axes.

Figure 5-14 illustrates a part, where the arrows indicate the orientation of the normalcy
axis at the time that the controller is on the point on the part where the head of the arrow
is touching (Figure 5-14 shows normalcy left (G21)). The letters A, B, C, D and E denote
different points on the part, referred to in the explanations below.

PART

A B

C

•
•

•

•
•

D
•

•

NormalcyX

NormalcyY

E
•

•

Figure 5-14. Tool Orientation

Although maintaining perpendicularity is possible using conventional G-code
programming, it would be very cumbersome. The moves have to be broken up into small
segments requiring extensive calculations to determine the appropriate rotary move
distances and feedrates.

The UNIDEX 600 Series controller provides the normalcy mode, which keep the tip of
the tool normal to the surface of the part being cut, alleviating the parts programmer from
this duty.

In order to utilize this mode, the operator must supply several pieces of information. This
includes the rotational axis of the cutting tool (B-axis) and the axes that make up the plane
where the operator must maintain normalcy (XPlane/YPlane).

Normalcy motion will not be generated by Manual (MDI) command lines, normalcy
motion is de-activated at the end of each MDI command line.

The homing cycle will disable normalcy motion.

G-code Commands U600 CNC Programming Manual

5-46 Aerotech, Inc. Version 1.1

While operating in the normalcy mode, the CNC automatically maintains the relationship
between the B-axis (defined by the NormalcyAxis parameter) and the plane defined by
the NormalcyX and NormalcyY task parameters. This requires two types of moves:

1. Normalcy Alignment Moves
2. Normalcy Concurrent Moves

Initial Normalcy Alignment

When Normalcy mode is activated, the normalcy axis will rotate to the required absolute
angle determined by the active G21 / G22 mode, and by the controller looking for the
next move within the CNC program. No initial alignment is required. This may however,
require that the HomeOffsetDeg machine parameter be set to a non-zero value to align the
tool to the angle that will be set by the initial normalcy alignment move.

For example, in Figure 5-15, when G21 is activated at Point A the Normalcy axis will
rotate to the 270 degree absolute position. This is the same as any Normalcy Alignment
Move.

Normalcy Alignment Moves

Once the tool achieves normalcy during a G1 move, the remainder of the move does not
require normalcy movement. However, at the start of a G1 move, normalcy movement of
the axis prior to the move may be required. For example, following the path of the part
shown in Figure 5-14, the normalcy axis must rotate 90 degrees at Point B before
proceeding down the next side. This is called a Normalcy Alignment Move; accomplished
by a “Rapid” or G0 move and moves at the speed specified by the RapidFeedRateRPM
machine parameter. The direction of rotation of the Normalcy Alignment Move depends
on whether you are in Normalcy Left (G21) or Normalcy Right (G22) mode.

When two moves are such that a Normalcy Alignment Move is required between
them, the controller will force a G9 between the moves so it can smoothly move the
normalcy axis in-between the moves. However, the controller does not detect when
the normalcy axis is required to change velocity abruptly as the result of blending two
moves that move the normalcy axis during the move.

Normalcy Alignment Moves require look-ahead. There are some important issues the
CNC programmer needs to be aware of in order to avoid unexpected results. See
CNC Block Look-Ahead for details.

Avoiding Excessive Slow-Downs During Normalcy Mode

When two moves are non-tangential, such that a Normalcy Alignment Move is required
between them (as in points B and C in Figure 5-14), the controller will force a G9
between the moves, so it can smoothly move the normalcy axis between the moves.
However, this can cause unnecessary G9’s between moves that are intended as tangential,
but are very slightly non-tangential, because of the limited precision of the values entered
in the G1’s. For example, clearly, there should be no slowdown at Point D between move
C to D, and move D to E (no normalcy axis alignment move needed). However, there may

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-47

be a slight angular difference, due to the precision of the numbers entered. Therefore, to
allow the user to prevent this, the NormalcyAngleToleranceDeg parameter is provided. If
an angle between two moves is less than this value, then the controller will not slowdown
to do the normalcy axis alignment, but will instead make the alignment move during the
first UpdateTimeSec of the second move. However, the user is warned that if the value of
NormalcyAngleToleranceDeg is too high, it will “jerk” the normalcy axis too much
during the alignment.

Normalcy Concurrent Moves

Unlike G1 moves, circular moves (G2 and G3) require that the normalcy axis move
continuously throughout the move. These moves are called Normalcy Concurrent Moves,
because the normalcy axis will be moved concurrently with the other two axes, as
opposed to a Normalcy Alignment move. For example, following the path of the part in
Figure 5-14, the normalcy axis must rotate 180 degrees, while traveling from Point C to
D. The speed that the normalcy axis moves during a concurrent move is determined by
the radius of the circle and the feedrate along the circular path. This is much like a
complex move where the rotary and linear axes move and the linear axis is dominant.
Meaning, the speed and acceleration of the rotary axis is slaved to the speed and
acceleration of the linear axis. Therefore, many of the same problems can occur here, like
those in a complex linear dominant move. This section just mentions how they differ from
the cases discussed under the G98 command.

In normalcy moves, the speed of the normalcy axis is not limited. The normalcy axis
can easily be made to travel too fast.

In normalcy concurrent moves, the normalcy axis acceleration and deceleration will
be determined by the acceleration and deceleration of the linear axes. No
acceleration/deceleration limits are applied, very easily causing the normalcy axis to
travel too fast, exceeding its limitations.

Normalcy only affects contoured motion, it has no effect on the G0 moves.

The rotary axis cannot be moved explicitly with G1/G2/G3 commands while
normalcy mode is active (G21/G22). Doing so will lead to unexpected results.

WARNING

WARNING

G-code Commands U600 CNC Programming Manual

5-48 Aerotech, Inc. Version 1.1

You can verify the current state of the Normalcy mode, by viewing the
‘NormalcyActiveLeft’ and ‘NormalcyActiveRight’ bits of the task Status3 variable (use
the AerStat.exe utility to do this), or, by looking for G21 and G22 in the active G code
display in the lower left of the MMI 600 run or manual screens.

The controller does not detect when the normalcy axis is required to change velocity
abruptly as the result of blending two moves (G108) that require the normalcy axis to
rotate during the move. For example, in Figure 5-14, while moving from point C to
point D, the normalcy axis is moving at some constant speed, so as to stay normal to
the part. However, after point D, it should not be moving in order to maintain
normalcy. But, if the user is in G108 mode, then the controller will not decelerate to
a stop between move B to C, and move C to D, – it will maintain a constant feedrate
through the transition. Therefore, the normalcy axis will be forced to change to zero
velocity instantaneously. This may cause unacceptable acceleration/deceleration,
unless corner rounding mode is used.

5.9.1. Disable Normalcy Mode G20

SYNTAX: G20

EXAMPLE: G20

The G20 command disables the normalcy mode of operation where the cutting tool is
automatically kept perpendicular to the part being cut (normalcy mode). This command is
the default.

Refer to the Normalcy Mode Overview for a general description of the implementation of
this feature on the UNIDEX 600 Series controller.

5.9.2. Activate Normalcy Mode Left G21

SYNTAX: G21

EXAMPLE: G21

This command activates the mode of operation where the cutting tool is automatically
kept perpendicular to the part being cut (normalcy mode) as shown in Figure 5-15.

WARNING

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-49

 Rotates 45° Rotates 315°

Figure 5-15. Normalcy Left

Refer to the Normalcy Mode Overview for a general description of the implementation of
this feature on the UNIDEX 600 Series controller. The active state of this command is
indicated by bit 16 of the Status3 task parameter.

5.9.3. Activate Normalcy Mode Right G22

SYNTAX: G22

EXAMPLE:G22

This command activates the mode of operation where the cutting tool is automatically
kept perpendicular to the part being cut (normalcy mode)(refer to Figure 5-16).

Refer to the Normalcy Mode Overview for a general description of the implementation of
this feature on the UNIDEX 600 Series controller. The active state of this command is
indicated by bit 17 of the Status3 task parameter.

 Outside Corner Insider Corner

 Rotates 45°

Figure 5-16. Normalcy Right

Refer to the Normalcy Mode Overview for a general description of the implementation of
this feature on the UNIDEX 600 Series controller.

G-code Commands U600 CNC Programming Manual

5-50 Aerotech, Inc. Version 1.1

5.10. Corner Rounding (G23, G24) G23

SYNTAX: G23 F<fExpression> ;where fExpression is the “rounding” time in seconds

G23 F<fExpression> ;where fExpression is the “rounding” time in seconds

In corner rounding mode, all normal acceleration/deceleration is disabled, and instead
acceleration and deceleration are controlled by the VELTIMECONST axis parameter.
Corner rounding is applied to all motion, including homing and camming motion.

The F (or P) parameter, must be a positive value, which sets the VELTIMECONST axis
parameter, for all axes owned by the task. The F (or P) value has a resolution of .001
seconds. Specifying an F (or P) word value of less than .001 seconds, forces all motion to
have instantaneous acceleration and deceleration. When a subsequent G24 is executed,
the VELTIMECONST axis parameter is restored to its value prior to the G23 command,
disabling corner rounding mode.

Additionally, when corner-rounding mode is activated it takes precedence over the
acceleration/deceleration, producing motion as if a G8 command were on every CNC
program line, with the value specified in the G23 command solely determining the
acceleration/deceleration time. The corner-rounding mode temporarily overwrites the
current values for the VELTIMECONST, ACCEL, DECEL, ACCELMODE and
DECELMODE axis parameters. When corner rounding is disabled, the original values for
these axis parameters will be restored.

Do not change values for these axis parameters when corner-rounding mode is active
or you will overwrite the original values.

You can verify the current status of corner rounding by viewing the “CornerRounding” bit
of the task Status3 variable (use the AerStat.exe utility), or by looking for G23 or G24 in
the active G code display in the lower left of the U600MMI-NT/95 run or manual screens.

5.10.1. Disable Corner Rounding Mode G24

SYNTAX: G24

Disables the G23 corner-rounding mode. No parameters are required (see G23 for
details). Restores the values for VELTIMECONST and ACCEL/DECEL axis parameters
stored by the G23 command.

WARNING

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-51

5.11. Coordinate System #2 Configuration (G26 – G29)

G26 through G29 codes apply to plane 2 in the same way that G16 and G17 through G19
function on coordinate system 1. Coordinate system 2 is used only in context with the
G12 and G13 commands, and determines the axes comprising the second coordinate
system (#2) XYZ plane where the G12 or G13 commands produce circular motion. Refer
to G16, and G17 through G19 commands for more details on G26, G27, G28, and G29.

5.11.1. Assign Coordinate System #2 Axes G26

SYNTAX: G26~<axisMask>
except: the user must supply exactly 3 axis letters (order of the letters is
significant).

EXAMPLE: G26 U V W

This G-code is equivalent to assigning to the task parameters: Coord2I, Coord2J and
Coord2K simultaneously. This G code determines the axes comprising the second (#2)
XYZ plane where the G12 or G13 commands produces circular motion. Coord2I is
assigned to the first axis in the mask, Coord2J is assigned to the second axis in the mask,
and so on. This command is the default.

By default:
Coord2I is 3 (U task axis)
Coord2J is 4 (V task axis)
Coord2K is 5 (W task axis)

5.11.2. Plane Selection Codes for Coordinate System #2 G27/G28/G29

SYNTAX: G27 or G28 or G29

EXAMPLE: G27

These G-codes are equivalent to G17, G18, and G19, respectively, but for plane 2 instead
of plane 1. Refer to the descriptions for G17/G18/G19 for details. G27 selects Plane 1,
G28 selects Plane 2, and G29 selects Plane 3 (refer to Figure 5-17). The active plane is
indicated by bits 26-28 of the Status3 task parameter.

Plane #3 - G29
Coord2J - Coord2K

 Plane #1 - G27
 Coord2I - Coord2J

 Plane #2 - G28
 Coord2K - Coord2I

 Coord2J

 Coord2K

 Coord2I

Figure 5-17. Coordinate System 2 Orientation (Clockwise or G2 Motion)

G-code Commands U600 CNC Programming Manual

5-52 Aerotech, Inc. Version 1.1

5.12. Software Limits Overview

Software limits effectively allow the hardware end of travel limits to be reduced to a
range specified by the user. They are very similar to safe zones.

5.12.1. Configuring Software Limits

To enable Software Limits, they must be able to generate a fault. This requires the
software limit bit be set within the axis FAULTMASK, additionally the software limit bit
must also be set in one of the other faultmasks for the condition the fault will cause to
occur. See configuring faultmasks for more information.

The minimum (more negative) software limit value must be defined in machine counts,
via the CCWEOT axis parameter.

The minimum (more positive) software limit value must be defined in machine counts, via
the CWEOT axis parameter.

The software limit action must be defined relative to homing, via the SOFTLIMITMODE
axis parameter.

5.13. Safe Zones (G34, G35, G36, G37)

In some applications, it is desirable to define a particular area where all the axes’ motion
may occur. Conversely, other applications require the ability to define an area where axes
are not permitted to enter. The UNIDEX 600 Series controllers Safe Zone feature
provides the user with the ability to perform either of these two functions. Safe zones are
similar to software limits.

Although multiple axes may be used in the specification of the safe zone, each axis is
evaluated individually. A more sophisticated version of safe zones may be implemented
via a user CNC program, such as this:

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-53

Multi-Dimensional Safe Zones

Note: Axis speeds will be limited by the scan rate of this program!
; Dynamic Safe Zone Example
;
; Be sure the safe zones are configured
; Be sure to then set the safe zone fault bit in the X & Y ABORTMASK axis parameters !
; See the AvgPollTimeSec global parameter for info. on determining the scan rate
; of this program.
; A safe zone fault will require moving the Z axis out of range, to clear the fault.

#define OFF 0 ; disable safe zones
#define DONT_ENTER 2
#define DONT_EXIT 1

SOFTLIMITMODE.X = 1 ; must home axes before soft limits become active
SOFTLIMITMODE.Y = 1

WHILE(1) ; forever
; for each position of an axis, Z in this example
IF(PositionUnits.Z > 2.0)

; limit the X axis
SAFEZONECCW.X = -1 * CntsPerInch.X ; machine counts
SAFEZONECW.X = 1 * CntsPerInch.X ; machine counts
SAFEZONEMODE.X = DONT_ENTER

; limit the Y axis
SAFEZONECCW.Y = -2 * CntsPerInch.Y ; machine counts
SAFEZONECW.Y = 2 * CntsPerInch.Y ; machine counts
SAFEZONEMODE.Y = DONT_ENTER

ELSE IF((PositionUnits.Z > .5) AND (PositionUnits.Z < 2.0))

; limit the X axis
SAFEZONECCW.X = -4 * CntsPerInch.X ; machine counts
SAFEZONECW.X = 3 * CntsPerInch.X ; machine counts
SAFEZONEMODE.X = DONT_ENTER

; limit the Y axis
SAFEZONECCW.Y = -3 * CntsPerInch.Y ; machine counts
SAFEZONECW.Y = -2 * CntsPerInch.Y ; machine counts
SAFEZONEMODE.Y = DONT_ENTER

 ;ELSE IF

 ; other conditions

ELSE
; disable any active safe zone
SAFEZONEMODE.X = OFF
SAFEZONEMODE.Y = OFF

ENDIF
ENDWHILE

G-code Commands U600 CNC Programming Manual

5-54 Aerotech, Inc. Version 1.1

5.13.1. Set Safe Zone Minimum Values G34

SYNTAX: G34~<axisPoint>
G34

EXAMPLE: G34 X5 Y5

This command defines the minimum safe zone value for the axes specified in the Axis
Point. The values must be specified in inches. The value specified is translated to machine
counts and entered into the appropriate axis SAFEZONECCW axis parameter.

5.13.2. Set Safe Zone Maximum Values G35

SYNTAX: G35~<axisPoint>
G35

EXAMPLE: G35 X5 Y5

This command defines the maximum safe zone values for the axes specified in the Axis
Point. The values must be specified in inches. The value specified is translated to machine
counts and entered into the appropriate axis SAFEZONECW axis parameter.

5.13.3. Enable Safe Zones G36

SYNTAX:G36~<axisMask>
G36

EXAMPLE: G36 X v

The G36 command enables a safe zone on the specified axes. Once enabled, safe zone
testing is performed prior to the execution of each motion command. A safe zone axis
fault (See Axis Fault Mask Parameter Bit Definitions) occurs if the user attempts to
command motion which violates the safe zone restrictions. For more information on safe
zone fault handling, refer to the SAFEZONECCW and SAFEZONECW axis parameters.

Although multiple axes may be used in the specification of the safe zone for the P1
and P2 types, each axis is evaluated individually. See Figure 5-18.

EXAMPLE PROGRAM:

SAFEZONEMODE.X = 2
SAFEZONEMODE.Y = 2
G34 X11 Y8
G35 X13 Y9
G36 X Y

; X Area below will be ‘cant enter’ zone.
; Y Area below will be ‘cant enter’ zone.
; Set safe zone minimums
; Set safe zone maximums
; Activate safe zones

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-55

 In v a lid T rav e l Z o n e

 U n re s tric te d M o tio n

 X a x is →

↑
Y

 1 1 1 3

 8

 9

Figure 5-18. Unrestricted Safe Zones

Conversely, a SAFEZONEMODE=1 safe zone is used to specify a multi-dimensional
area where a set of axes may not travel. The user may not command motion through that
area (refer to Figure 5-18).

Safe zone boundaries are evaluated only when computing the target position of a motion
command. Therefore, if an axis is within the restricted area when a safe zone is enabled,
a safe zone fault is not generated until the first commanded move. Furthermore, if the
target position of that first motion command is outside the restricted area, the move
executes normally.

In order for the safe zone feature to operate as described, the SafeZone bit in the
FAULTMASK axis parameter must be set for that axis (see axis faults).

The safe zone parameters are interpreted as relative displacements if the CNC is in
the G91 mode when the G36 command executes.

5.13.4. Disable Safe Zones G37

SYNTAX: G37~<axisMask>
G37

EXAMPLE: G37 X v

The G37 command disables safe zones for the specified axes. As with the enable safe
zones command (G36), this command accepts parameters to permit the user to specify the

G-code Commands U600 CNC Programming Manual

5-56 Aerotech, Inc. Version 1.1

axes this command applies. Therefore, safe zones can be disabled individually or in
groups.

This command is the default.

EXAMPLE PROGRAM:

G37 X Y Z ;Disable the safe zones active for the X, Y and Z axes

The default operational mode of the CNC has safe zones disabled.

5.13.5. Safe Zone Activation

Assuming the axis faultmasks have been properly configured:

1. Activating safe zones while an axis is within a safe zone will generate a fault.

2. An axis crossing the boundary of a safe zone, will generate a fault.

3. Changing the range of the safe zone, will generate a fault if an axis is within the

new safe zone.

Note: Although multiple axes may be used in the specification of the safe zone for

the P1 and P2 types, each axis is evaluated individually.

5.13.6. Configuring and Using Safe Zones

To enable Safe Zones, they must be able to generate a fault based upon the Safe Zone.
This requires the safe zone bit be set within the axis FAULTMASK, additionally the safe
zone bit must also be set in one of the other faultmasks for the condition the fault will
cause to occur. See configuring faultmasks for more information.

The minimum (more negative) safe zone value must be defined, via the G34 command or
the SAFEZONECCW axis parameter.

The maximum (more positive) safe zone value must be defined, via the G35 command or
the SAFEZONECW axis parameter.

The safe zone action must be defined relative to homing, via the SOFTLIMITMODE axis
parameter.

The safe zone mode of operation must be defined via the SAFEZONEMODE axis
parameter.

Safe zones must be enabled via the G36 command.

Safe zones are disabled via the G37 command.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-57

5.14. Backlash Compensation (G38, G39)

5.14.1. Enable Backlash Compensation G38

SYNTAX: G38~<axisPoint>
G38

EXAMPLE: G38 X5 Y5

 The G38 command activates backlash compensation on the specified axes, with the
specified values for each axis. It is equivalent to setting the REVERSALMODE axis
parameter for each specified axis to the specified value. The values must be specified in
inches.

See the REVERSALMODE axis parameter for more details on backlash compensation
(See the UNIDEX 600 Series User’s Guide, P/N: EDU157, Appendix C).

Backlash compensation is disabled via the G39 command.

5.14.2. Disable Backlash Compensation G39

SYNTAX: G39~<axisMask>
G39

EXAMPLE:G39 X Y

The G39 command deactivates backlash compensation on the specified axes. It is
equivalent to setting the REVERSALMODE axis parameter for each specified axis to
zero. See the REVERSALMODE axis parameter for more details on backlash
compensation (See the UNIDEX 600 Series User’s Guide, P/N: EDU157,
Appendix C).

This command is the default.

Backlash compensation is enabled via the G38 command.

G-code Commands U600 CNC Programming Manual

5-58 Aerotech, Inc. Version 1.1

5.15. Cutter Radius Compensation (G40, G41, G42, G43, G45)

While machining a part, it is sometimes necessary to consider the radius of the cutting
tool. For example, when a tool cuts a part, the center of the tool follows the programmed
path. The outside edge of the tool cuts the actual part, offset from the programmed path
by the tool’s radius.

Intersectional Cutter Radius Compensation (ICRC) is a feature that allows the operator to
program the path along the outside edge of the tool without regard to its size. Without this
feature, the operator would have to offset the actual part dimensions based on the radius
of the tool.

This feature significantly decreases the programming effort required for this type of
application. It also allows the user to run the same program with tools of different
diameters by simply changing the tool diameter information.

Cutter compensation is only intended with contoured moves (G1, G2, G3, G12, G13).
You may command non-contoured motion on axes that are not part of the cutter radius
compensation plane while in cutter compensation mode, however, this will lead to
undesirable results, since cutter compensation has no effect on the other types of motion.

Cutter Radius Compensation requires CNC block look-ahead, to find the next contoured
Move, to compensate for inside and outside corners (see below). If commands other than
contoured motion commands are executed while cutter compensation is active, the
controller may not be able to find the next contoured motion statement, and therefore may
not follow the desired path. The CNC Block Look–Ahead Failures section describes these
situations.

Cutter Radius Compensation will not operate over multiple lines entered in MDI mode, as
after each MDI line, the cutter compensation is canceled.

Homing an axis will disable cutter radius compensation

The user must provide a tool radius with the G43 command (or by setting the task
parameter CutterRadiusInch). The user must also provide the cutter compensation axes
representing the plane where the compensation will be performed in the G44 command
(this can be done with the task parameters CutterX and CutterY as well). The first axis
(CutterX) in the G44 command is called the horizontal axis; the second axis (CutterY) is
called the vertical axis. Two circumstances of interest in cutter compensation are the
inside and outside corners, shown in Figure 5-19.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-59

Figure 5-19. Cutter Radius Compensation Path

Inside corners and outside corners both have their limitations, whereby the tool will
not stay inside the part. This is because cutter radius compensation “sees” only the
next move when determining the tool placement.

Cutter compensation can be used during parts rotation (G84), mirroring (G83), or
normalcy (G21/G22).

5.15.1. CNC Block Look-Ahead Requirements in Cutter Compensation Mode

In the process of computing targets in cutter compensation paths, the controller must
know the next move in the sequence. In Figure 5-20, the cutter must stop short of the
actual target during the horizontal move, so that it can follow the correct path (solid line)
during the vertical move. However, if the controller fails to find the next move, it will
follow the incorrect (dashed line) path. The process of finding the next move is called
CNC block look-ahead and there are important limitations that need to be conformed to
allow the look-ahead process to work properly.

([SHFWHG�3DWK

$FWXDO�3DWK

:RUNSLHFH

Figure 5-20. Cutter Compensation with Intervening Statements

WARNING

G-code Commands U600 CNC Programming Manual

5-60 Aerotech, Inc. Version 1.1

5.15.2. Cutter Radius Compensation Lead-On and Lead-Off Moves

Normally, when entering (G41, G42) and exiting (G40) Cutter Compensation, you
provide a contoured move on the same line. For G41, G42, this move is called the “lead-
on” move, for G40 this is called the “lead-off” move. The lead-on and lead-off moves
must be a contoured move.

Lead-on and lead-off moves must be carefully constructed, so as not damage the tool or
part. Figure 5-21 is an example of a safe lead-on move. See G40 for an example of a safe
lead-off move.

Lead-on moves will ‘blend in’ the tool radius gradually during the move, in order to
compensate for the tool radius, on the correct side of the part. When a lead-on move is
completed, the cutter radius is fully compensated for.

/HDG�2Q�0RYH

:RUNSLHFH

&XWWHU�&RPS�3DWK

1RQ�&XWWHU�&RPS�3DWK

%

$

Figure 5-21. Cutter Radius Compensation Lead-On Moves

5.15.3. Interaction of Mirroring and Cutter Compensation Commands

When mirror mode (G83) is active, cutter compensation left becomes cutter compensation
right, and vice versa.

5.15.4. Cutter Compensation Limitations within Inside Corners

Figure 5-22 below, illustrates that for inside corners, the controller will not generate a link
move. Be aware that the horizontal move will stop short of the actual target (because of
the tool radius) and a small circular wedge of uncut material will remain in the inside
corner.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-61

NOTE: Material left “uncut” in shaded section
NOTE: Limitations, as discussed below.

Cutter

Figure 5-22. Inside Corner

Inside Corner Situation 1: This condition is a form of over-cutting (cutting too much
material away). It occurs because cutter compensation only looks-ahead one move. In the
figure below, case A illustrates that the tool stays inside the part, and case B where it does
not. In case B, the tool does not see the move from point c to point d, when placing the
cutter after the move from point a to point b. This situation, in general, will occur when
the length of a move (such as from point B to C) is shorter than the cutter (tool) radius.
Note that this form of over-cutting will usually generate an Over-Cutting warning.
However, not all cases of over-cutting will trigger this warning. The example below will.

tool tool

Case A Case B

b

d

b

a

c

Inside Corner Situation 2: Another, more important situation where the tool will not
stay inside the part can occur, due to cutter compensation not seeing previous moves.

AB

C D

Φ

ϑ

Note that this situation, like the Inside Corner Situation #1, may trigger an overcutting
warning. The above example above will trigger such a warning.

The user programs the path, from points, A to B to C to D and back to point A, before
withdrawing the tool, while in cutter comp right (G42). After executing segment C to D
the cutter lies in position Φ, as expected. But, after segment D to A, the cutter lies in

G-code Commands U600 CNC Programming Manual

5-62 Aerotech, Inc. Version 1.1

position ϑ, which moves through the part. This is because the controller does not see any
piece of the part after move D to A. The solution is to move towards B (from A) some
small amount, after the move from point D to A. Then you will stay within the part.

Any previous move may cause this problem, so this situation can occur in different forms.
The diagram below shows the problem occurring for a severe inside corner.

Φ

ϑ

B

A

C

Here the cutter moves to position Φ (we are in cutter right or G42), after move A to B.
But after move B to C, it positions itself at position ϑ, and does not see that it breaks
through the previous move, move A to B.

Inside Corner Situation 3: Another form of overcutting on an inside corner can occur if
an arc on the part has a shorter radius than the cutter radius. If this occurs, an over-cutter
warning is generated.

5.15.5. Cutter Compensation within Outside Corners

Figure 5-23 illustrates that the controller generates a link move (in this case, 90 degrees),
to move around the outside corner. The speed of this move is the same as the last move
(down the left edge) and there will be no deceleration between the user provided move
and the auto-generated circular arc. However, if the speed along the circular link move
must be limited due to the MaxFeedRateIPM / BlendMaxAccelLinearIPS2 machine / task
parameters, then the previous move will be limited in the same way.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-63

NOTE: Two possibel paths, see CutterToleranceDeg

Cutter

Programmed path is in solid line
Actual path is in dotted lines.

Figure 5-23. Outside Corner (Diagram A)

5.15.6. Deactivate Cutter Compensation (ICRC) G40

SYNTAX: G40

EXAMPLE:G40

The G40 mode exits cutter radius compensation mode. If you are not in cutter radius
compensation mode, this command is ignored. You must be in the G1 mode to execute
this command.

Normally, when entering exiting (G40) Cutter Compensation, you provide a contoured
move on the same line, this is called the “lead-off” move.

Lead-off moves must be carefully constructed, so as not damage the tool or part. The
diagram below is an example of a safe lead-off move.

Lead-off moves will ‘blend out’ the tool radius gradually during the lead-off move, in
order to remove compensation for the tool radius. If you do not provide a “lead-off” move
on the same line as the G40, then, it will use the next contoured move it executes, as the
lead-off move. Any number of CNC statements that are not contoured moves (except
G41, G42, G40, G143, G144, and G149) can be placed in-between the G40, and the
“lead-off” move. If it cannot find a next contoured move to use as a lead-off, it will not
remove the tool radius compensation.

G-code Commands U600 CNC Programming Manual

5-64 Aerotech, Inc. Version 1.1

Figure 5-24. Lead Off Moves

You must be careful when programming lead-off moves. By the time the move reaches
the target of the lead-off, the cutter radius is “blended out” of the move. Therefore, in the
example above, the distance between target point B and the workpiece must be greater
than the cutter radius or the lead-off move will actually move the tool downwards into the
workpiece.

EXAMPLE PROGRAM:

G40 G1 X1. Y1. F100. ;Deactivate the cutter radius compensation
;and remove the offset during the end move

5.15.7. Activate ICRC Left G41

SYNTAX: G41 [[Lead-In Move]]

EXAMPLE: G41

The G41 command activates Intersectional Cutter Radius Compensation (ICRC) to the
left of the programmed tool path relative to the direction of tool motion, (refer to
Figure 5-25). The center of the tool nose is kept on a line normal to the programmed path
until ICRC is deactivated. If you are already in cutter compensation mode, this command
is ignored. The lead-on move, is defined as the next contoured move on the same line as
the G41, or on the line following the G41. You must be in the G1 / G2 or G3 mode to
execute this command. The active state of this command is indicated by bit 13 of the
Status3 task parameter.

If you do not provide a “lead-on” move on the same line as the G41/G42, then, it will use
the next contoured move it executes, as the lead-on move. Any number of CNC
statements that are not contoured moves (except G41, G42, G40, G143, G144, and
G149) can be placed in-between the G41/G42, and the “lead-on” move. If it cannot find a
next contoured move to use as a lead-on, it will not enter cutter radius compensation.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-65

Tool

Actual path

Work piece

Tool Radius

Figure 5-25. Path Compensation Left

Refer to the Intersectional Cutter Radius Compensation Overview for a general
description of the implementation of this feature on the UNIDEX 600 Series controller.

5.15.8. Activate ICRC Right G42

SYNTAX: G42 [[Lead-In Move]]

EXAMPLE: G42

The G42 command activates Intersectional Cutter Radius Compensation (ICRC) to the
right of the programmed tool path relative to the direction of tool motion (refer to
Figure 5-26). The tool radius will be incorporated into the execution of the next contoured
motion command. The center of the tool nose will then be kept on a line normal to the
programmed path until ICRC is de-activated. If you are already in cutter radius
compensation mode, this command is ignored. The lead-on move, is defined as the next
contoured move on the same line as the G42, or on the line following the G42. You must
be in the G1 / G2 or G3 mode to execute this command. The active state of this command
is indicated by bit 14 of the Status3 task parameter.

If you do not provide a “lead-on” move on the same line as the G41/G42, then, it will use
the next contoured move it executes, as the lead-on move. Any number of CNC
statements that are not contoured moves (except G41, G42, G40, G143, G144, and
G149) can be placed in-between the G41/G42, and the “lead-on” move. If it cannot find a
next contoured move to use as a lead-on, it will not enter cutter radius compensation.

G-code Commands U600 CNC Programming Manual

5-66 Aerotech, Inc. Version 1.1

Tool

Actual path

Work piece

Tool Radius

Figure 5-26. Path Compensation Right

Refer to the Intersectional Cutter Radius Compensation Overview for a general
description of the implementation of this feature on the UNIDEX 600 Series controller.

5.15.9. Set Cutter Compensation Radius G43

SYNTAX: G43 F<fExpression> ; Where the expression is the tool radius

G43 P<fExpression > ; Where the expression is the tool radius

EXAMPLE: G43 F.001

G43 P.01

The G43 command sets the CutterRadiusInch task parameter for the current task. The
unit of measure associated with this radius is inches, unless bit 4 is set to one in the
CompatibilityMode global parameter, in which case it is user units. The F or P keyword
may specify the tool radius.

Use this command only when cutter compensation is not active. Refer to the G40
Overview for more information.

A G44 must be executed before a G43.

You may alternately perform the same function as the G43, through the use of tool
filesT_Word, or by setting the task parameter: CutterRadiusInchCutterRadiusInch
directly.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-67

5.15.10. Set Cutter Compensation Axes G44

SYNTAX: G44 <axisMask> ; Order of the axis in the mask is significant
except: the axis mask must contain two or three axis letters.

EXAMPLE: G44 X v

G44 X Y Z

The G44 command defines the axes comprising the X and Y plane, to be used for cutter
radius compensation, and/or cutter offset compensation.

The order of the axes specified is very important. The first two axes must match the
order specified by the circular plane specification, or the results will be unexpected.
The first and second axes in the G44 command must also be the first and second axes
specified in the G17, G18, G19 command. G44 by itself, causes the CutterX and
CutterY task parameters to define the axes. Use Table 5-4 to determine the correct
axis order for the G44 command.

Table 5-4. Required Order of Axes in a G44, when no G16 has been Executed

Circular Plane Mode G17 G18 G19

G44 Order G44 X Y G44 Z X G44 Y Z

The optional, third axis is used to define the “Z” or tool length axes. This axis, if provided
in the G44 command, is used to compensate for a tool length supplied in a tool file, and
activated by a G143.

You may alternately perform the same function as the G44 by setting the task
parameters: CutterX, CutterY, and CutterZ directly.

WARNING

G-code Commands U600 CNC Programming Manual

5-68 Aerotech, Inc. Version 1.1

5.16. Polar/Cylindrical Transformations (G45, G46, G47)

5.16.1. Disable Polar or Cylindrical Coordinate Transformation G45

The G45 command disables the polar or cylindrical coordinate transformations. This
command is the default — that is, both polar and cylindrical conversions are disabled.
You may enable either polar transformations (G46) or cylindrical transformations (G47),
but not both at the same time. See G46 or G47 for more details.

SYNTAX: G45

EXAMPLE: G45

See the example under the G46 command.

5.16.2. Enable Polar Coordinate Transformation G46

SYNTAX: G46~<axisMask>
except: the axis mask must contain exactly two axis letters.

EXAMPLE: G46 d v ; Sets d to be the radial axis, v to be the angular axis

The G46 command enables a transformation from an X/Y Cartesian axis plane to a polar
coordinate system. G45 disables the polar coordinate transformation. The G46 command
requires the use of the G52 command to define the axes, as described below and in
Table 5-5.

The polar coordinate system is comprised of a linear positioning device holding the tool
and a rotary device that holds the part centered about its axis of rotation. Part
programming is in Cartesian coordinates via the G1/G2/G3 commands acting upon
virtual horizontal and vertical axes, as specified in the G52 command. The controller
translates these virtual coordinates to polar coordinates {r, theta}, which are then used as
position commands for two real axes, specified by the G46 command.

The first axis specified in the G46 command is the radial axis, the second is the angular or
rotary axes. The first axes specified in the G52 command is the horizontal axis and the
second axis is the vertical axes (see diagram below).

Table 5-5. Transformation from an X/Y Cartesian Plane to a Polar Coordinate
System

Function Configured Assigned Name In Figure 5-27

Horizontal axis virtual 1st letter in G52 command X

Vertical axis virtual 2nd letter in G52 command Y

Radial axis To linear table 1st letter in G46 command U

Angular axis To rotary stage 2nd letter in G46 command C

You cannot generate asynchronous motion (or jog) while this mode is active.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-69

The polar axes coordinates at the time of executing the G46 are interpreted as offsets to
be applied to these axis. In other words, the polar axes position commands {r, th} are
given by the below equations, where h and v represent the horizontal and vertical
Cartesian coordinates, and where r0 and th0 represent the positions of the polar axes when
the G46 is first executed:

r = r0 + square_root(h*h + v*v)
th = th0 + arctan(v/h)

You may verify the current state of the Polar transformation mode, by viewing the
‘RThetaPolarActive’ bit 1 of the status3 task variable (use the AerStat.exe utility), or by
looking for G46 in the active G code display in the lower left of the MMI run or manual
screens.

Cylindrical coordinate transforms (G47) cannot be used in the G46 mode.

Cutter compensation may be used in the G46 mode. The virtual Cartesian axes must
be and the real radial polar axis must be a linear Type axis.

Motion through the “origin” (Cartesian axes = {0,0}) should not be attempted
because, it will cause a discontinuous step in the angular coordinate position
command.

Only G1/G2/G3 commands are valid within the polar coordinate transformation, G0
commands or any other asynchronous motion command should not be used when
G46 is active.

X

Y

U

C

Figure 5-27. Polar/Cylindrical Transformations Diagram

G-code Commands U600 CNC Programming Manual

5-70 Aerotech, Inc. Version 1.1

Figure 5-27 shows the geometry following the execution of a “G52 X Y”, and a “G46 U
C” command.

The following example illustrates a 4 inch/mm square part with rounded corners (1.0
inch/mm radius) centered at the X/Y origin. Contact with the part will occur at X=2.0,
Y=0.0. The rotary axis in the polar coordinate system is C and the linear axis is U.

EXAMPLE PROGRAM:

; Draw a 2 inch square with rounded corners
G70 G90 F100 ; Absolute mode, set feedrates
G0 X0 Z0 U0 C0 ; "home"
G9 G1 U20 C5 ; Real axes offsets (5 deg, 20 inches)

; Coordinate system setup
G16 X Y Z ; Define IJK for circles (I=X, J=Y, K=Z)
G18 ; Use IK plane for circles
G52 X Z ; X, Z are virtual axes (horz/vert)
G46 U C ; U is RADIAL axis, C is ANGULAR axis

; Part
G9 G1 X2.0 Z0.0

G91 G1 Z1.0
G2 X-1.0 Z1.0 I-1.0 K0
G1 X-2.0
G2 X-1.0 Z-1.0 I0 K-1.0
G1 Z-2.0
G2 X1.0 Z-1.0 I1.0 K0
G1 X2.0
G2 X1.0 Z1.0 I0 K1.0
G9 G1 Z1.0 ; Back to starting point

G9 G1 X1.0 ; Move off of the part
G45 ; Disable polar coordinate transform

EXAMPLE PROGRAM:
G90 G1 X2 Y0 U0 C2 ; ends at U0° C2
G52 X Y
G46 U C
G90 G1 X0 Y1 ; ends at U90° C1

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-71

5.16.3. Enable Cylindrical Coordinate Transformation G47

SYNTAX: G47~<axisMask>F~<radius>
except: the axis mask must contain exactly one axis letter.

EXAMPLE: G47 X F.05

The G47 command enables a transformation from the X/Y Cartesian axis plane into a
cylindrical (C, Y) coordinate system. The G45 command disabled the cylindrical
transformation, The G47 command requires the use of the G52 command to define the
axes, as described below (and in Table 5-6).

The cylindrical coordinate system is comprised of a rotary axis holding the part to be
machined (the C axis, in the diagram below) and a linear axis (the X axis, in the diagram
below) that moves parallel to the center of rotation of the rotary axis. An additional axis
perpendicular to the center line of rotation of the rotary axis may be present for
positioning a tool in the proximity of the part to be machined, however this axis is not
independent of, and not controlled by the coordinate transformation. Part programming is
via the G1/G2/G3 commands acting upon the linear (X axis, in the diagram below) and a
virtual Y axis.

In summary there are three axes functions involved in cylindrical coordinates, as shown in
the table below. Note that any particular axis can be assigned to any of the four axis
functions. In the table and diagram below we have chosen as example: X, Y, and C. You
command your motion using the axial and circumferential axes (must be configured as
virtual), but the actual motion is performed over the axial and rotational axes.

Table 5-6. Transformation from an X/Y Cartesian Plane to a Cylindrical Coordinate
System

Function Configured Assigned Name in Figure 5-28

Axial axis To linear axis 1st letter in G52 command X

Circumferential axis Virtual 2nd letter in G52 command Y

Rotational axis To rotary axis 1st letter in G46 command C

The controller will compute the appropriate distance to move the real C and X axes. All
subsequent Y axis position commands refer to circumferential distances around a part of
the specified radius according to the following relationship:

C_axis_command = Y_axis_commanded_position*360/(2*PI*current_radius)

Where r is the radius specified in the G46 command (or equivalently the
RThetaRadiusInch task parameter). The specified radius will be in user units, defined by
the G70/G71 modal command group, unless, its bit is set in the CompatibilityMode
global parameter, in which case the radius will be in inches.

The X/Y axis plane is defined by the G44 command (or equivalently the RThetaX and
RThetaY task parameters). The C axis is defined in the G47 command (or equivalently by

G-code Commands U600 CNC Programming Manual

5-72 Aerotech, Inc. Version 1.1

the RThetaT task parameter). The radius of the cylinder is also provided in the G47
command (or equivalently the RThetaRadiusInch task parameter).

Polar coordinate transformations (G46) cannot be used in the G47 mode. You cannot
generate asynchronous motion while this mode is active.

You may verify the current state of the Cylindrical transformation mode, by viewing the
‘RthetaCylindricalActive’ bit 2 of the Status3 task variable (use the AerStat.exe utility),
or by looking for ‘G47’ in the active G code display in the lower left of the MMI run or
manual screens.

Only G1/G2/G3 commands and cutter compensation generated motion are valid
under this mode of operation. G0 commands or any other type of axis motion should
not be attempted when the cylindrical coordinate transformation is active.

Figure 5-28 is an illustration of the relationship between the X, Y, rotational, and optional
infeed axis.

Y

C

r

X

Infeed axis (optional)

Figure 5-28. X, Y, Rotational and Optional Infeed Axis

The example program that follows illustrates the commands required to enable and
disable cylindrical coordinate transformation. The axis designations used in this example
are consistent with Figure 5-28.

EXAMPLE PROGRAM:
G52 X Y ; Define X axial axis, Y tangential axis
G47 C F3.0 ; Enable cylindrical coordinates
G9 G1 X2.0 Y2.0 ; Perform axis motion
 . ;
 . ; G1/G2/G3 motion commands
 . ;
G45 ; Disable cylindrical coordinates

EXAMPLE:
; To cut 90 degrees of thread, ascending in Clockwise on the X axis,
; looking up the X axis, on a 3 inch radius cylinder,
; with a pitch of .1 inch

G52 X Y

G47 C F3 ; cylinder radius = 3

G91 G1 Y4.712389 X0.1 ; 4.712389 = 2πr 90° / 360°

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-73

5.16.4. Monitor Touch Probe G51

SYNTAX: G51 <axismask> ; Monitor probe input

The UNIDEX 600 Series controller provides support for digital touch probe measuring.
It is designed to permit you to determine the location of the part in space.

The Probe command initializes the touch probe, the G51 command activates probe
monitoring. When the probe input is detected, the CNC aborts the move in progress and
stores the current position of each axis into the variable array defined by the Probe
command. This enables you to start the part moving toward the probe and have the part
stop moving when it reaches the probe. The program may then use the position
information returned to determine the physical location of the part in space.

Once a probe cycle is initiated, the CNC actively monitors the appropriate input channel
until the probe input is detected. When a probe touch occurs the cycle is complete. To
initiate a probe measuring cycle again, execute another G51 command.

Refer to the extended commands Probe and DVAR for more information.

The G51 command can be used after a previous execution of a G51 command. This will
repeat the cycle. A G51 without an axismask disables probe monitoring. The axis
positions of the specified axes are stored in the variable array in the order of the standard
axis names, not in the order of the axis names specified in the G51 command.

EXAMPLE:

DVAR $POSDATA[16] ;Define an array to hold positions
PROBE 10 0 $POSDATA[0]

G51 X
G1 X5.0 F30

;Initialize touch probe input on virtual input bit 10.
;The probe being used ;is active low. Positional
;information will be placed into the POS array.

;Monitor probe input
;Start motion towards probe

5.16.5. Define Polar/Cylindrical Transformation Axes G52

SYNTAX: G52 <axisMask > ; Order of the axis is significant !
except: the axis mask must contain exactly two axis letters.

EXAMPLE:G52 D v

The G52 command defines a virtual axis pair to be used for the Polar Coordinate
Transformation (G46), or the Cylindrical Coordinate Transformation (G47). You cannot
use both Polar and Cylindrical transformations on the same task at the same time.

The order of the axes specified is very important The exact meaning of the axis depends
on whether a Polar of Cylindrical transformation will be used. See G46 or G47 for
details.

G-code Commands U600 CNC Programming Manual

5-74 Aerotech, Inc. Version 1.1

5.17. Fixture Offsets (G53 – G59)

 The fixture offset feature provides the user with the ability to program part dimensions
relative to a fixed point in space, not knowing the absolute coordinates of that point.
Dimensional distances specified in the absolute (G90) mode are relative to this point in
space, as opposed to the last software home position.

The UNIDEX 600 Series controller provides support for two such points in space. These
points are referred to as fixture offset #1 and fixture offset #2. Separate G-codes have
been implemented to permit the user to define which fixture offset is currently active.

5.17.1. Cancel Fixture Offset G53

SYNTAX: G53~<axisMask>
G53

EXAMPLE: G53 X v

The G53 command cancels fixture offsets on all axes or if a mask is provided, on
selective axes. The preset position register(s) of the axes where the fixture offset is
applied are immediately updated to reflect the change in the coordinate system. The
machine position registers are unaffected. Please note that only one offset may be active
per axis. The offsets are not cumulative. If the command is invoked with an axismask ,
then the action takes place only for the specified axes. If there is no axismask, the action
takes place for all axes, owned by the current task. This command is the default.

You may selectively remove fixture offsets from some axes, however, this practice is
not recommended, and can lead to extreme confusion. It is strongly recommended
that G53 be used without parameters.

5.17.2. Set Fixture Offset #1 G54
SYNTAX: G54~<axisPoint>

 G54

EXAMPLE: G54 X8.9 Y$GLOB0 z9

The G54 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #1. After a G54 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G54, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #1. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #1.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset machine parameter, for each axis in the axispoint. After a subsequent G53
(cancels the fixture offset), then you can execute a G54 without an axispoint. If there is no

WARNING

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-75

axispoint, the action takes place for all axes assigned to the task, using the FixtureOffset
machine parameter values. See the example below:

X

Y

•

•Software Home

Fixture Offset {0,0} point

5

3

G54 X-3 Y-5

NOTE: Software home is the same as hardware home, if no presets are active (G92)

If no fixture offsets are active, then a G53 will set the preset position registers equal to the
machine position registers for the specified axes.

EXAMPLE PROGRAM:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

X,Y X,Y
Line# ProgramLine Preset Machine
--

N10 HOME X Y 0,0 0,0

N20 G54 X3 -3,0 0,0

N30 G90 G1 X1 Y1 -2,1 1,1

N40 G53 1,1 1,1

N50 G54 -2,1 1,1

N40 G53 1,1 1,1

G-code Commands U600 CNC Programming Manual

5-76 Aerotech, Inc. Version 1.1

5.17.3. Set Fixture Offset #2 G55

SYNTAX : G55~<axisPoint >
G55

EXAMPLE: G55 X8.9 Y$GLOB0 z9

The G55 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #2. After a G55 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G55, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #2. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #2.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset2 machine parameter, for each axis in the axispoint. After a subsequent G53
(remove the fixture offset), then you can execute a G55 without an axispoint. If there is
no axispoint, the action takes lace for all axes assigned to the task, using the FixtureOffset
machine parameter values. See the example below:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

EXAMPLE PROGRAM:

G55 X10. Y5. Z3. ;Enable fixture offset #2. All dimensional data will now
;be relative to the point (10,5,3) instead of (0,0,0).

5.17.4. Set Fixture Offset #3 G56

SYNTAX : G56~<axisPoint >
G56

EXAMPLE: G56 X8.9 Y$GLOB0 z9

The G56 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #3. After a G56 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G56, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #3. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #3.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset3 machine parameter, for each axis in the axispoint. After a subsequent G53
(remove the fixture offset), then you can execute a G56 without an axispoint. If there is

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-77

no axispoint, the action takes place for all axes assigned to the task, using the
FixtureOffset machine parameter values. See the example below:

EXAMPLE PROGRAM:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

G56 X10. Y5. Z3. ; Enable fixture offset #3. All dimensional data will
 ; now be relative to the point (10,5,3) instead of

 ; (0,0,0).

5.17.5. Set Fixture Offset #4 G57

SYNTAX : G57~<axisPoint >
G57

EXAMPLE: G57 X8.9 Y$GLOB0 z9

The G57 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #4. After a G57 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G57, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #4. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #4.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset4 machine parameter, for each axis in the axispoint. After a subsequent G53
(remove the fixture offset), then you can execute a G57 without an axispoint. If there is
no axispoint, the action takes lace for all axes assigned to the task, using the FixtureOffset
machine parameter values. See the example below:

EXAMPLE PROGRAM:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

G57 X10. Y5. Z3. ; Enable fixture offset #4. All dimensional data will
 ; now be relative to the point (10,5,3) instead of

 ; (0,0,0).

G-code Commands U600 CNC Programming Manual

5-78 Aerotech, Inc. Version 1.1

5.17.6. Set Fixture Offset #5 G58

SYNTAX : G58~<axisPoint >
G58

EXAMPLE: G58 X8.9 Y$GLOB0 z9

The G58 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #5. After a G58 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G58, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #5. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #5.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset5 machine parameter, for each axis in the axispoint. After a subsequent G53
(remove the fixture offset), then you can execute a G58 without an axispoint. If there is
no axispoint, the action takes lace for all axes assigned to the task, using the FixtureOffset
machine parameter values. See the example below:

EXAMPLE PROGRAM:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

G57 X10. Y5. Z3. ; Enable fixture offset #4. All dimensional data will
 ; now be relative to the point (10,5,3) instead of

 ; (0,0,0).

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-79

5.17.7. Set Fixture Offset #6 G59

SYNTAX : G59~<axisPoint >
G59

EXAMPLE: G59 X8.9 Y$GLOB0 z9

The G59 command specifies the absolute coordinates (measured from software home) of
the point referred to as fixture offset #6. After a G59 the preset position register(s) of the
specified axes are updated immediately to reflect the change in the coordinate system (the
machine position registers are unaffected).

After a G59, all absolute position coordinates (coordinates provided when you are in G90
mode) specified by the user are measured from Fixture offset #6. Move Coordinates
provided when in G91 (incremental) mode are unaffected by fixture offset #6.

If the command is invoked with an axispoint, then the fixture offset value is stored in the
FixtureOffset6 machine parameter, for each axis in the axispoint. After a subsequent G53
(remove the fixture offset), then you can execute a G59 without an axispoint. If there is
no axispoint, the action takes lace for all axes assigned to the task, using the FixtureOffset
machine parameter values. See the example below:

EXAMPLE PROGRAM:

See the comprehensive example (Table 5-7) also, which shows fixture offset #1 and #2 in
combination with software home.

G59 X10. Y5. Z3. ; Enable fixture offset #6. All dimensional data will
 ; now be relative to the point (10,5,3) instead of

 ; (0,0,0).

G-code Commands U600 CNC Programming Manual

5-80 Aerotech, Inc. Version 1.1

 Table 5-7. Fixture Offset Example

Line
#

Program Line Comments X, Y
Preset

X, Y
Machine

N10 HOME X Y Move X and Y axes to hardware home 0,0 0,0

N20 G90 F100. Use absolute distance mode and set feedrate. 0.0 0.0

N30 G1 X10. Y10. Move the X and Y axes 10. 10,10 10,10

N40 G92 Set software home 0,0 10,10

N50 G54 X5. Y3. Activate fixture offset #1 at 5,3 -5,-3 10,10

N60 G1 X10. Y15. Move the X axis 10.0 and Y axis 15.0 10,15 25,28

N70 G53 De-activate fixture offsets 15,18 25,28

N80 G55 X-10. Y5. Activate fixture offset #2 at -10,5 25,13 25,28

N90 G1 X10. Y15. Move to absolute position 10,15 10,15 10,30

N100 G53 De-activate fixture offsets 0,20 10,30

N110 G54 X5. Y5. Re-activate fixture offset #1 at 5,5 -5,15 10,30

N120 G1 X5. Y5. Move to absolute position 5,5 5,5 20,20

N130 G55 X10. Y10. De-activate fixture offset #1 and activate
fixture offset #2

0,0 20,20

N140 G1 X-10.

Y-10.

Move to absolute position

-10,-10

-10,

-10

10,10

N150 G53 De-activate all fixture offsets 0,0 10,10

When the fixture offsets were activated (N50, N80 and N110), the value of the fixture
offset was subtracted from the value of the preset registers for those axes.

When the fixture offsets were deactivated (N70, N100 and N150), the offset currently
being used was added into the value of the preset registers for those axes.

When changing from fixture offset #1 being active to fixture offset #2 being active, the
values for fixture offset #1 were added into the preset registers before the values for
fixture offset #2 were added into those registers.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-81

5.18. Contoured Accel/Decel Overview (G60, G61)

The trajectory generator provides several types of automatic acceleration and deceleration
for use on contoured motion (G1, G2, G3, G12, and G13). Note, that G0, spindle motion
or asynchronous motion does not use the methods described here, but, instead, their own
set of parameters to control the acceleration/deceleration in a similar manner. Table 5-8
summarizes all of the G-codes pertaining to acceleration/deceleration for contoured
motion (G1, G2, G3, G12, and G13).

 Table 5-8. Accel/Decel G-codes Summary

G-code Function
G60 F<value> Set acceleration time (via the AccelTimeSec task parameter)
G61 F<value> Set deceleration time (via the DecelTimeSec task parameter)
G63 Set sinusoidal (1-cosine) accel/decel
G64 Set linear accel/decel
G65 F<value> Set linear axes acceleration rate (via the AccelRateIPS2 task

parameter)
G66 F<value> Set linear axes deceleration rate (via the DecelRateIPS2 task

parameter)
G67 Set time-based accel/decel (G60/G61 values used)
G68 Set rate-based accel/decel (G65/G66/G165/G166 values used)
G165 F<value> Set rotary axes acceleration rate
G166 F<value> Set rotary axes deceleration rate

The user should specify (using the G codes in Table 5-8) both “acceleration data” and
“deceleration data”, which are normally set to the same value. The controller will always
use the “acceleration data” supplied by the user to accel/decel between feedrates specified
in subsequent CNC program blocks (using F or E words). The controller will use the
“deceleration data” supplied by the user only to decelerate to zero speed at the end of a
series of moves, or to decelerate to a lower speed dictated by the acceleration limiting
feature.

The automatic acceleration computed by the trajectory generator can in some cases
conflict with the feedrates supplied in the program. See 5.18.1. Explicit Feedrates and
Automatic Acceleration for details on these situations.

In some cases, the axes may not reach the programmed vectorial feedrate, due to feedrate
limiting. Feedrate limiting will scale down the vectorial velocity, so that no axis exceeds
its maximum feedrate.

There are a number of conditions where the controller cannot obey the specified
acceleration and may generate an instantaneous deceleration of the velocity
command. See G8 and G9 for details.

WARNING

G-code Commands U600 CNC Programming Manual

5-82 Aerotech, Inc. Version 1.1

5.18.1. Explicit Feedrates and Automatic Acceleration

The controller will always use the acceleration/deceleration parameters supplied by the
user to change between feedrates explicitly specified in the CNC program (using F or E
words), even if such changes actually imply decelerations (changes to lower speeds).

When a feedrate is specified on, or immediately in front of, a contoured motion line (for
example “G1 X3 F10”), the controller attempts to reach that feedrate exactly when the
motion on that line is complete. However if a change in specified feedrates between two
given moves is small compared to the specified acceleration data, then the controller will
still follow the acceleration data and therefore reach the required feedrate before the move
is complete (see Figure 5-29 diagram A). The remainder of the move is then completed at
that constant feedrate. The controller will also follow the acceleration data if the change
in feedrates is large compared to the acceleration data (see Figure 5-29 diagram B). In
this case the specified feedrate is not reached by the end of the move. The controller will
still continue to attempt to reach the specified feedrate during following moves, using the
same acceleration data. Of course if a following move specifies a new feedrate, the old
acceleration is abandoned and a new one is begun.

Figure 5-29. Feedrate Changes

 Feedrate Before Move

 Feedrate Specified In
Move

Time

 Acceleration rate as specified by acceleration data

Velocity

Small Feedrate Changes (Diagram A.)

Large Feedrate Change (Diagram B.)

Feedrate Actually Achieved

 Feedrate Specified In
Move

 Time

 Acceleration rate as specified by acceleration data

Velocity

 Feedrate Before Move

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-83

5.18.2. Set Acceleration Time G60

SYNTAX: G60~F<fExpression> ;Where the expression is the accel time in seconds

G60~P<fExpression> ;Where the expression is the accel time in
;seconds

EXAMPLE: G60 F0.5 ;Sets new acceleration time to 1/2 sec (500 msec)

When performing acceleration using the time based (G67) parameters, the UNIDEX 600
Series controller uses the AccelTimeSec task parameter to determine the duration of the
acceleration. G60 sets this task parameter for the current task. The accel time may follow
either an F or P keyword, as shown in the syntax definition above.

Subsequent motion commands accelerate to the commanded velocity within the specified
time period. This time period is specified in seconds, with a resolution of 0.001 seconds
(1 millisecond).

The same acceleration time is used for both rotary and linear axes.

The parameter may be set regardless of the current setting of the Ramp Type G-code
group. However, the effect of this parameter will be apparent only when operating in
a time based (G67) acceleration mode.

5.18.3. Set Deceleration Time G61

SYNTAX: G61~F<fExpression> ;Where the expression is the decel time in seconds

G61~F<fExpression> ;Where the expression is the accel time in
;seconds

EXAMPLE: G61 F.25 ;Sets new deceleration time to 1/4 sec (250 msec)

When performing deceleration using the time based (G67) parameters, the UNIDEX 600
Series controller uses the DecelTimeSec task parameter to determine the duration of the
deceleration. G61 sets this task parameter for the current task. The decel time may follow
either an F or P keyword, as shown in the syntax definition above.

Subsequent motion commands accelerate to the commanded velocity within the specified
time period. This time period is specified in seconds, with a resolution of 0.001 seconds
(1 millisecond).

The same deceleration time is used for both rotary and linear axes.

The parameter may be set regardless of the current setting of the Ramp Type G-code
group. However, the effect of this parameter will be apparent only when operating in
a time based (G67) acceleration mode.

G-code Commands U600 CNC Programming Manual

5-84 Aerotech, Inc. Version 1.1

5.19. Profile Resolution Time (G62)

5.19.1. Set Profile Time G62

SYNTAX: G62~F<fExpression> ;Where the expression is the time in seconds

G62~P<fExpression> ;Where the expression is the time in seconds

EXAMPLE: G62 F.005 ;Sets the profile time to 5 milliseconds

The G62 command sets the UpdateTimeSec task parameter for the current task, which
defines the time between calculated points for the CNC profiler. The profile time may
follow either an F or P keyword, as shown in the syntax definition above.

Time

Velocity or Position

•

•

Where ∆t is the UpdateTimeSec value

Profile path

∆t ∆t ∆t

• • •

Figure 5-30. UpdateTimeSec Diagram

5.20. Accel/Decel Rates and Modes (G63 -> G68)

5.20.1. Sinusoidal (1-Cosine) Accel/Decel Mode G63

SYNTAX: G63

EXAMPLE: G63

The G63 command specifies that the acceleration and deceleration type to be used is
sinusoidal. G64 specifies that the acceleration and deceleration will be linear. The
acceleration and deceleration profiles will always be of the same type (linear/sinusoidal).
The sinusoidal/linear programming mode state is indicated by bit 2 of the Mode1 task
parameter. This command is the default.

The UNIDEX 600 Series controller offers the flexibility of choosing between two distinct
types of acceleration/deceleration; linear or sinusoidal. Sinusoidal acceleration, also
called (1-cosine), since this more exactly describes the acceleration curve:

acceleration curve: vp = 100*(1-cosine(θ))/2

deceleration curve: vp = 100*(1 + cosine(θ))/2
where:

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-85

vp is % of full speed, and θ varies from 0° at the beginning of accel/decel to
180° at the end of the accel/decel phase (T1 and T2 in Figure 5-31,
respectively).

As illustrated in Figure 5-31, both Linear and Sinusoidal acceleration will take place over
the same time interval (time interval determined by the G67 / G68 modes). The G63
command specifies that the acceleration and deceleration type to be used is sinusoidal.

Sinusoidal acceleration is typically used on systems containing a large inertial mass
resistant to sudden changes in acceleration. As illustrated, the motion accelerates
gradually, then accelerates steeply. As it approaches the commanded velocity, the
acceleration gradually decreases until it reaches zero.

 Speed

 Time

 Speed

 Time

 Linear Accel/Decel Sinusoidal Accel/Decel

T 1 T TT
12 2

 Figure 5-31. Constant vs. Cosine Acceleration

The acceleration and deceleration occurs over the same time period regardless of
whether sinusoidal or linear mode is chosen.

Disadvantage of Sinusoidal Acceleration

The disadvantage of sinusoidal acceleration is that the acceleration rate will vary
throughout the profile, it will show a higher acceleration rate (1.57 times higher) in the
middle of the curve, than linear acceleration would. Another disadvantage of sinusoidal
acceleration is that it is wasteful and sometimes less accurate when the move duration is
less than the profile time.

Advantage of Sinusoidal Acceleration

Sinusoidal acceleration reduces jerk (sudden changes in acceleration) that occurs at the
beginning and end of linear acceleration profiles.

G-code Commands U600 CNC Programming Manual

5-86 Aerotech, Inc. Version 1.1

5.20.2. Linear Accel/Decel Mode G64

SYNTAX: G64

EXAMPLE: G64

The UNIDEX 600 Series controller offers the flexibility of choosing between two distinct
types of acceleration/deceleration: linear or sinusoidal. The G64 command specifies the
acceleration/deceleration type to be used is linear. See G63 for more details on linear and
sinusoidal acceleration/deceleration. The sinusoidal/linear programming mode state is
indicated by bit 2 of the Mode1 task parameter.

Refer to Figure 5-31.

5.20.3. Set Acceleration Rate (for linear type axes) G65

SYNTAX: G65~F<fExpression> ; Where the acceleration rate is in inches

G65~F<fExpression> ; Where the acceleration rate is in inches

EXAMPLE: G65 F100

When accelerating a linear type axis, using the rate based parameters (G68), the UNIDEX
600 Series controller uses the AccelRateIPS2 task parameter as the acceleration value.
Also, this parameter may be set (for the current task) with a G65 command. This rate is
specified in inches/second/second, unless, bit 4 is set to one in the CompatibilityMode
global parameter, in which case it is in user units/second/second. This setting is ignored if
the acceleration is time based (G67). The acceleration rate may follow either an F or P
keyword, as shown in the syntax definition above.

Note that the rate is applied over the vectorial distance of the move. For example, if a
G70 G90 X1 Y1 executes, then the specified rate is correct over the vectorial distance of
1.414 inches, not 1 inch.

G66 only applies when all the axes in the move are of linear type or if the move contains
both rotary and linear axes and the dominance of the move is linear (refer to the G98/G99
Overview for details on axes dominance). See G165 if the axes are rotary, or if rotary
axes are dominant.

EXAMPLE PROGRAM:

G70 G65 F0.5 ;Sets the new acceleration rate to 0.5 inches/second/second
G71 G65 F1.27 ;Sets the new acceleration rate to 1.27 mm/second/second

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-87

5.20.4. Set Deceleration Rate (for linear type axes) G66

SYNTAX: G66~F<fExpression> ; Where the acceleration rate is in inches

G66~P<fExpression> ; Where the acceleration rate is in inches

EXAMPLE: G66 F100

When decelerating a linear type axis, using the rate based parameters (G68), the UNIDEX
600 Series controller uses the DecelRateIPS2 task parameter as the deceleration value.
Also, this parameter can be set (for the current task) with a G66 command. This rate is
specified in either inches/second/second, unless bit 4 is set to 1 in the CompatibilityMode
global parameter, in which case it is user units/second/second. This rate is ignored if the
deceleration is time based (G67). The decel rate may follow either an F or P keyword, as
shown in the syntax definition above.

Note that the rate is applied over the vectorial distance of the move. For example, if a
G70 G90 X1 Y1 executes, then the specified rate will be correct over the distance of
1.414 inches, not 1 inch.

G66 only applies when all the axes in the move are of linear type or if the move contains
both rotary and linear axes and the dominance of the move is linear (refer to the G98/G99
Overview for details on axes dominance). See G166 if the axes are rotary, or if rotary
axes are dominant.

EXAMPLE PROGRAM:

G70 G66 F0.1 ;Sets the new deceleration rate to 0.1 inches/second/second
G71 G66 F0.254 ;Sets the new deceleration rate to 1.27 mm/second/second

5.20.5. Time Based Acceleration/Deceleration G67

SYNTAX: G67

EXAMPLE: G67

The UNIDEX 600 Series controller offers two modes of operation with respect to
acceleration and deceleration: time or rate based. The G67 command specifies that
acceleration and deceleration are to occur with time-based parameters.

While operating in this mode, the AccelTimeSec and DecelTimeSec task parameters
specify the amount of time all moves are to accelerate to and decelerate from the
commanded velocity. These parameters may be changed using the G60 and G61
commands, respectively. This command is the default. The time/rate based programming
mode state is indicated by bit 3 of the Mode1 task parameter.

G-code Commands U600 CNC Programming Manual

5-88 Aerotech, Inc. Version 1.1

5.20.6. Rate Based Acceleration/Deceleration G68

SYNTAX: G68

EXAMPLE: G68

The UNIDEX 600 Series controller offers two modes of operation with respect to
acceleration and deceleration: time and rate based. The G68 command specifies the
occurrence of acceleration and deceleration based on the rate based parameters.

There are different rates for linear and rotary axes. Therefore, there are four relevant
rates: linear type acceleration, linear type deceleration, rotary type acceleration and rotary
type deceleration. The time/rate based programming mode state is indicated by bit 3 of
the Mode1 task parameter.

The AccelRateIPS2 and DecelRateIPS2 task parameters specify the amount the velocity is
to change each second for linear type axes. Therefore, the amount of time used to reach
the commanded velocity varies between moves. These parameters may be changed using
the G65 and G66 commands, respectively.

The AccelRateDPS2 and DecelRateDPS2 task parameters specify the amount the velocity
is to change each second for rotary type axes. Therefore, the amount of time used to reach
the commanded velocity varies between moves. These parameters may be changed using
the G165 and G166 commands, respectively.

Rate-based acceleration and deceleration are typically used on systems limited in
acceleration and commanded to varying velocities.

When using sinusoidal acceleration (G63), in rate based mode, the acceleration rate
will vary throughout the curve and show a higher acceleration rate (1.57 times
higher) in the middle of the curve, then specified.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-89

5.21. Metric/English Units (G70, G71)

The user can change the units at will, as interpreted in the floating point constants and
variables that represent positions, distances, speeds, or accelerations. If a G70 or G71 is
on the same line as motion, then the G70/G71 executes before the motion.

5.21.1. Inch Dimension Programming Mode (Units) G70

SYNTAX: G70

EXAMPLE: G70

The UNIDEX 600 Series controller provides the user with the option of specifying all
distances and feedrates in either English units (inches) or metric units (millimeters). The
G70 command indicates English units.

While the G70 mode is active and an axis is a linear type, all distances are in inches, all
speeds are in inches per minute, and all acceleration rates are in inches per second2. If the
axis is a rotary type, the distances are degrees and velocities are in RPM, regardless of the
G70/G71 settings. This command is the default. This G code also affects the positions
and velocities as displayed by the MMI600-NT/95. Each of the 4 tasks maintains their
own G70/G71 mode. The English/Metric programming mode state is indicated by bit 0 of
the Mode1 task parameter.

EXAMPLE PROGRAM:

G70. ;Set English programming mode (inches)

G1 X10. ;Move the X axis 10 inches in the positive direction

G1 Y-5. ;Move the Y axis 5 inches in the negative direction

F100. ;A feedrate of 100 inches per minute is established

G-code Commands U600 CNC Programming Manual

5-90 Aerotech, Inc. Version 1.1

5.21.2. Metric Dimension Programming Mode (Units) G71

SYNTAX: G71

EXAMPLE: G71

The UNIDEX 600 Series controller provides the user with the option of specifying all
distances and feedrates in either English units (inches) or metric units (millimeters). The
G71 command indicates that units are metric.

While the G71 mode is active and an axis is a linear type, all distances are in millimeters,
all speeds are in millimeters per minute, and all acceleration rates are in millimeters per
second2. If the axis is a rotary type, the distances are degrees and velocities are in RPM,
regardless of the G70/G71 settings. The English/Metric programming mode state is
indicated by bit 0 of the Mode1 task parameter.

EXAMPLE PROGRAM:

G71 ;Set metric programming mode (millimeters)

G1 X4. ;Move the X axis 4 mm in the positive direction

G1 Y-2. ;Move the Y axis 2 mm in the negative direction

F100. ;A feedrate of 100 mm per second is established

5.22. Restore Preset Position Registers G82

SYNTAX: G82~<axisMask>
G82

EXAMPLE: G82 X v

The G82 command restores the position registers to their value prior to executing a G92
command. See the G92 command for more details on position registers. If the command
is invoked with an axismask, then the action takes place only for the specified axes. If
there is no axismask, the action takes place for all axes.

The G82 command is not valid in the G42 or G43 mode.

If no fixture offsets are active, then a G82 will make the preset position registers equal the
machine position registers, for the specified axes.

WARNING

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-91

5.23. Transformation Overview (G83, G84)

These codes allow the programmer to apply transformations in a plane to the coordinates
they supply in constants or variables without changing the actual values they supply in the
G1, G2 or G3 commands. Note, mirroring and part rotation may not be used with G0
commands. The motion to be transformed must be composed entirely of G1, G2, G3,
G12 and G13 commands. Also, these transformations may be active simultaneously.
When applied simultaneously, the order the transformations were executed is not
significant.

If combinations of the following transformations are simultaneously active, they will be
applied to the command in the following order:

Software Home -G92

Parts Rotation -G84

Mirroring -G83

Polar -G46

Cylindrical -G47

5.23.1. Mirror Image G83

SYNTAX: G83~<axisMask>
G83

EXAMPLE: G83 X v z

The G83 command activates or deactivates the mirror image function. The mirror
function is enabled by a G83 with an axis mask on the line, any axis not specified in this
mask will have mirroring disabled when the command is executed, mirroring is not
cumulative. The mirror function is disabled by the G83 command with no axes specified.
You can verify the current state of the Mirroring mode, by viewing the ‘MirrorActive’ bit
of the Status3 task variable (use the AerStat.exe utility), or by looking for G83 in the G
code display in the lower left of the MMI 600 run or manual screens.

The G83 command operates in both the relative and absolute mode (G90/G91). In
relative mode, the origin or point in the plane at the moment mirroring takes place is the
current position in the plane. In absolute mode, the origin is the home position.

While in the absolute mode, the user must be at the software home established by the
G92 command when activating the mirror mode, or unexpected results occur.

Refer to Figure 5-32 and Figure 5-33 for mirror image examples.
WARNING

G-code Commands U600 CNC Programming Manual

5-92 Aerotech, Inc. Version 1.1

)LJXUH�ZLWK�QR�PLUURULQJ)LJXUH�ZLWK�*���;

)LJXUH�ZLWK�*���<)LJXUH�ZLWK�*���;�<

<

;

Figure 5-32. G83 Mirror Image Example 1

EXAMPLE PROGRAM:
G91 ; Set relative programming mode
G70 ; English programming units
HOME X Y ; Move to reference (0, 0)
G83 ; Disable mirroring
CLS BOX1 ; Call subroutine BOX1 (draws box in 1st quadrant in Figure 5-33
G83 X Y ; Activate mirror image function for X and Y axes, changing positive

; X and Y values to negative values
CLS BOX1 ; Call subroutine BOX1 (draws box in 3rd quadrant in Figure 5-33)
G83 ; Disable mirroring, REMEMBER TO DO THIS !
M2 ; Stop the program

DFS BOX1 ; Define subroutine BOX1
F100. ; Set feedrate to 100 IPM
G1 X2. Y4. ; Initiate a positive linear move for the X and Y axis
X2. ; Initiate a positive linear move for the X axis
Y2. ; Initiate a positive linear move for the Y axis
X-2. ; Initiate a negative linear move for the X axis
Y-2. ; Initiate a negative linear move for the Y axis
X-2. Y-4. ; Initiate linear move of X and Y axis to start position
ENDDFS ; end of subroutine

Y

(2,6)

(4,6)

(4,4)

(2,4)
X

Mirror Image

Home (0,0)

 Figure 5-33. G83 Mirror Image Example 2

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-93

5.23.2. Parts Rotation G84

SYNTAX: G84~<axisMask>~F<fExpression>
except: the axis mask must contain exactly two axis letters.

EXAMPLE: G84 X Y F$VAR1 ; Part rotation angle from X-Y plane is set to
;VAR1 value

G84 X Y ; Part rotation is turned off

The G84 command defines the plane and angle of parts rotation. The parts rotation
programming feature permits the changing of orientation (in a plane) of a sequence of
moves without changing the move coordinates or changing permanent coordinate
reference frames.

The angle must be specified in positive degrees. The angle is relative and is based on the
last angle specified in a G84 command (see the picture below). A positive angle produces
a CCW angle as referenced from the axes’ plane. If no angle is specified, parts rotation
will be disabled for the specified axes.

This statement block must occupy its own line (no other blocks on the line). G84 is modal
so rotation is in effect until deactivated. You can verify the current state of the Parts
Rotation mode, by viewing the ‘RotationActive’ bit of the Status3 task variable (use the
AerStat.exe utility), or by looking for ‘G84’ in the active G code display in the lower left
of the UNIDEX 600 MMI run or manual screens. The active state of this command is
indicated by bit 0 of the Status3 task parameter. Parts rotation is not disabled by the
HOME command.

Parts rotation may be activated in either G90 or G91 mode, but you may not change the
mode while parts rotation is active, or unexpected results may occur. G0 commands may
not be used while parts rotation is active or unexpected results may occur.

Figure Without Parts Rotation

Figure Rotated by 315 Degrees

1st Letter in Axis Mask

2nd Letter in Axis Mask

1st Letter in Axis Mask

Angle Passed in F Word
2nd Letter in Axis Mask

G-code Commands U600 CNC Programming Manual

5-94 Aerotech, Inc. Version 1.1

You may activate parts rotation at non-zero coordinates, causing coordinate rotation
around an offset point. However, when rotating about an offset point, be sure that when
you disable parts rotation, you are physically at the same point in space at which parts
rotation was activated if you will be doing any movement after parts rotation is
deactivated, or unexpected results may occur.

EXAMPLES (see Figure 5-34):

$GLOBAL0 = 0;

G71

G91 ; Incremental programming mode

N1 G1 X5. F500. ; Move X axis five units in plus direction

G84 X Y F45 ; Set X, Y part rotation angle to 45

N3 X5. ; Move X axis five units in plus direction

G84 X Y F270 ; Set the X, Y part rotation angle to -45

N5 X5. ; Move X axis five units in plus direction

G84 X Y F630 ; Set the X, Y, part rotation angle to 225

N7 X2.5 ; Move X axis 2.5 units in plus direction

G84 X Y F$GLOBAL0 ; No change in parts rotation angle

N9 X2.5 ; Move X axis 2.5 units in plus direction

G84 X Y ; Disable part rotation

N11 X5. ; Move X axis five units in plus direction

G84 X Y F330 ; Reset the part rotation angle to -30

N13 X5. ; Move X axis five units in plus direction

G84 X Y F0 ; Disable part rotation

N15 X5. ; Move X axis five units in plus direction

N1

N9

N3

N7

N5

N13

N11

Figure 5-34. G84 Parts Rotation Example

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-95

5.24. Positioning Modes (G90, G91)

The user can change the interpretation of the position/distance constants or variables they
provide. When a G90 or G91 is on the same line as motion, then the G90/G91 executes
before the motion.

5.24.1. Absolute Dimension Programming Mode (Distance) G90

SYNTAX: G90

EXAMPLE: G90

Prior to the execution of motion commands, the UNIDEX 600 Series controller must be
told whether programmed dimensional data is to be interpreted as absolute coordinates, or
as an offset from the current axis position. The G90 command specifies that all move
values be interpreted as absolute coordinates. This command is the default. The
absolute/incremental programming mode state is indicated by bit 1 of the Mode1 task
parameter.

If a rotary Type axis is moved in G90 mode, then its target position is first modulo’d to
360 degrees. For example, if A is a rotary axis and G90 A500 is executed, A moves to
140 degrees.

EXAMPLE PROGRAM:

Assume the axes start at (0,0). Figure 5-35 illustrates the results of this example.

G90 ;Set absolute programming mode
F100. ;Establish feedrate for subsequent moves
G1 X10.0 Y10.0 ;Move X and Y axes to absolute coordinate 10,10
G1 X15.0 Y25.0 ;Move X and Y axes to absolute coordinate 15,25
G1 X15.0 Y10.0 ;Move X and Y axes to absolute coordinate 15,10

��
��

��
��

�

� �� �� ��

<

;��

Figure 5-35. Absolute Mode Programming

G-code Commands U600 CNC Programming Manual

5-96 Aerotech, Inc. Version 1.1

5.24.2. Incremental Position Programming (Distance) G91

SYNTAX: G91

EXAMPLE: G91

Prior to the execution of motion commands, the UNIDEX 600 Series controller must be
told whether programmed dimensional data is to be interpreted as absolute coordinates or
as an offset from the current axis position. The G91 command specifies that all positions
be interpreted as incremental distances from the current position. The
absolute/incremental programming mode state is indicated by bit 1 of the Mode1 task
parameter.

If a rotary Type modulo axis is commanded in G91 mode, then its target position is NOT
modulo’d to 360 degrees. For example, if A is a rotary axis and G91 A900 is executed,
the A axis moves a full two and one half revolutions.

EXAMPLE PROGRAM:

Assume that the starting position is (0,0). Figure 5-36 illustrates the result of this
example.

G91 ;Set incremental programming mode
F100. ;Establish feedrate for subsequent moves
G1 X10.0 Y10.0 ;Move the X and Y axes a distance of 10.0
G1 X15.0 Y25.0 ;Move X axis 15.0 and Y axis 25.0 from current position
G1 X15.0 Y10.0 ;Move the X axis 15.0 and Y axis 10.0 from current position

0

10

20

30

40

50

0 20 40 60
Axis Title

Axis
Title

Figure 5-36. Incremental Mode Programming

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-97

5.25. Preset Positions (G92)

5.25.1. Software Home (Set Preset Positions) G92

SYNTAX: G92~<axisPoint>

EXAMPLE: G92 X8.9 Y$GLOB0 z9

This command defines a ‘preset position’ or a software home position. This is useful
when the user wants to program in absolute coordinates measured from a non-zero
position. The G92 command has no effect on motion commands specified in relative
coordinates (G91 mode). The G92 command does not cause any axis movement. A G92
command within a blended motion CNC program block will force a deceleration to zero
velocity.

G92 must be followed by an axis point list. The G92 command will be executed for all
axes in the list, using the associated values. If an axis is not in the list, then its preset will
not be changed. For example, a “G92 X-1 Y-1” then a “G92 X-2” is equivalent to the
single command: “G92 X-2 Y-1.” Axes that are not specified in the axis point, will not be
affected.

Upon execution of the G92, the PresetCmdUnits machine parameters will be assigned to
the coordinates provided in the G92. No movement is executed. In other words, the
coordinates provided in the G92 specify the current position relative to the new “software
home” position. All subsequent motion commands (in absolute coordinates) are then
measured from the software home, not {0,0}. For example, if you execute a G92X0Y0
while the current position is {2,3}, a subsequent G90G0X1Y1 would go to {3,4}.

You can also provide non-zero coordinates to the G92, to declare a software home at a
position other than the current position. For example, if the current position (with no
presets active) is {2,3}, and you execute a “G92 X–1, Y-1”, then the new software home
is at {3,4}. A subsequent execution of the command “G1 X0 Y0” would move to
software home, or the coordinate {3, 4}.

Note that, at this point in the above example, the PresetCmdUnits machine parameter
values will read: {-1,-1}, while the PositionCmdUnits machine parameters will still be {2,
3}. The G92 command changes the value of the PresetCmdUnits machine parameter, but
not the values of the PositionUnits and PositionCmdUnits machine parameters. The latter
two always reflect the distance from the hardware home position (the zero position when
no presets are active), while the former (PresetCmdUnits) always reflects the distance
from the preset position set with G92. The presets also do not change the value of the
POS or POSCMD axis parameters, which specifies the machine counts from the hardware
home position.

The G82 command clears the preset positions of a G92 command, thereby restoring
software home to the hardware home position.

The G92 has some special considerations, when used in conjunction with a ScaleFactor.

G-code Commands U600 CNC Programming Manual

5-98 Aerotech, Inc. Version 1.1

X

Y

•

•Current Position

Software Home

 5

 3

G92 X-3 Y-5

EXAMPLE PROGRAM:

;Where X,Y positions are expressed as {x,y}
G1 X10 Y10 ;Move to PositionCmdUnits={10,10} PresetCmdUnits={10,10}
G92 X-1.0 Y-2.0 ;No move PositionCmdUnits={10,10} PresetCmdUnits={-1,-2}
G1 X0 Y0 ;Move to PositionCmdUnits={11,12} PresetCmdUnits={0,0}
G82 ;No move PositionCmdUnits={11,12} PresetCmdUnits={11,12}

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-99

5.26. Feedrate Modes (G93, G94, G95)

5.26.1. Inverse Time Feedrate Programming (FeedrateMode) G93

SYNTAX: G93

EXAMPLE: G93

The UNIDEX 600 Series controller provides the flexibility to specify feedrates (the F and
E words) in either user units/minute (G94) or 1/minutes (G93), or user-units/spindle-
revolution (G95). In all three of the above cases, user units are revolutions in the case of
the E word, and inches or millimeters (for G70 and G71 modes respectively) for the F
word. Note that the actual feedrates reported (the LinearFeedrateActual or
RotaryFeedRateActual task parameters) will always be in the same units as the F and E
words respectively.

The G93 command specifies that feedrates should be interpreted as 1/minutes. The
comments below concern the F word, but apply equally as well to the E word.

In G93 mode the actual feedrate used is calculated from:

(F value given in the F word) = (distance of move) / (Actual feedrate used in move)

Where the distance of the move is measured along the actual path of the move (it is an arc
distance for a G2/G3), and is in user units while the feedrate is in user-units/minute.

If the actual feedrate in the move is the actual speed during the entire move, (which is not
true during automatic acceleration, feedrate limiting , (see Actual Feedrates on page 5-
18), then during G93 mode, the above formulae simplifies to:

(F value given in the F word) = 1 / (Actual duration of move in minutes)

The active G93/G94/Gx95 mode is indicated by bits 16-17 of the Mode1 task parameter.
to .7 minutes per revolution

G-code Commands U600 CNC Programming Manual

5-100 Aerotech, Inc. Version 1.1

5.26.2. Feed Per Minute Feedrate Programming (FeedrateMode) G94

SYNTAX: G94

EXAMPLE: G94

The UNIDEX 600 Series controller provides the flexibility to specify feedrates (the F and
E words) in either user units/minute (G94) or 1/minutes (G93), or user units/spindle
revolution (G95). In all three of the above cases, user units are revolutions in the case of
the E word, and inches or millimeters (for G70 and G71 modes respectively) for the F
word. Note that the actual feedrates reported (the LinearFeedrateActual or
RotaryFeedRateActual task parameters) will always be in the same units as the F and E
word respectively. The G94 command specifies that feedrates be interpreted as user units
per minute. The active G93/G94/Gx95 mode is indicated by bits 16-17 of the Mode1 task
parameter. The formula below assumes that the feedrate is the actual speed during the
entire move, which is not true during automatic acceleration, feedrate limiting, etc. (see
Actual Feedrates on page 5-18). The feedrate is calculation as:

F
SquareRoot(X Y ... a)

of minutes to complete move

2 2 2

=
+ + +

where: X is the move distance for the X axis

Y is the move distance for the Y axis

a is the move distance for the a axis

etc.

When performing circular interpolation on two axes, the sum of the squares for those axes
is replaced by the product of the arc radius and the arc angle squared. For example, if
circular interpolation is being performed on the X and Y axes, the feedrate would be set
as follows:

F
SquareRoot((R *Theta) Z ... a)

of minutes to complete move

2 2 2

=
+ + +

where: R is the arc radius

Theta is the arc angle (in radians)

Z is the move distance for the Z axis

a is the move distance for the a axis.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-101

5.26.3. Feed Per Spindle Revolution Feedrate Programming G95

SYNTAX : G95 ; F feedrate now in feed per spindle 1 rev

G295 ; F feedrate now in feed per spindle 2 rev

G395 ; F feedrate now in feed per spindle 3 rev

G495 ; F feedrate now in feed per spindle 4 rev

EXAMPLE: G95 ; Feedrate now based on spindle 1 speed

G395 ; Feedrate now based on spindle 3 speed

The UNIDEX 600 Series controller provides the flexibility to specify feedrates (the F and
E words) in either user units/minute (G94) or 1/minutes (G93), or user units/spindle-
revolution (G95). In all three of the above cases, user units are revolutions in the case of
the E word, and inches or millimeters (for G70 and G71 modes respectively) for the F
word. Note, that the actual feedrates reported (the LinearFeedrateActual and
RotaryFeedRateActual task parameters) will always be in the same units as the F and E
word respectively. The active G93/G94/Gx95 mode is indicated by bits 16-17 of the
Mode1 task parameter.

The G95 command specifies that the feedrates be interpreted in units of user-
units/spindle-revolution. If the spindle speed varies during the machining process, the
speed of the associated axis also vary.

The G95 command specifies that the value of the S word (speed of the spindle) is to be
used to determine the desired velocity of the other axes in motion. The feedrate keyword
(F) then contains the vectorial distance which the axes are to be moved for each
revolution of the spindle axis.

The formula below assumes that the feedrate is the actual speed during the entire move,
which is not true during automatic acceleration, feedrate limiting, etc. (see Actual
Feedrates on page 5-18). This feedrate can be calculated as follows:

F
SquareRoot(X Y ... a)

of spindle revs to complete move

2 2 2

=
+ + +

where: X is the move distance for the X (linear) axis
Y is the move distance for the Y (linear) axis.

G-code Commands U600 CNC Programming Manual

5-102 Aerotech, Inc. Version 1.1

When generating circular motion on two axes, the sum of the squares for those axes is
replaced by the product of the arc radius and the arc angle squared. For example, if
circular interpolation is being performed on the X and Y axes, the feedrate would be set
as follows:

F
SquareRoot((R *Theta) Z ... a)

of spindle revs to complete move

2 2 2

=
+ + +

where: R is the arc radius
Theta is the arc angle (in radians)
Z is the move distance for the Z axis
a is the move distance for the a axis.

When in the G95 mode, the unsigned spindle speed is used as the reference, that is, the
direction of the spindle motion has no effect on the speed of the contoured motion. The
spindle speed that is used as the basis for the slaved axes, is the commanded not the
actual. That is, real-time variations in the spindle actual velocity will not cause any
variations in the speed of the contoured move.

Actual feedrate in user units is: []ipm mmpm F
user units

rev
S

rev




∗ 



min

EXAMPLE PROGRAM:

G95 ; Set spindle based feedrate mode
G70 F100.; Define a linear feedrate of 100 in. per spindle revolution
G71 F500 ; Define a linear feedrate of 100 mm.. per spindle revolution
E5. ; Define a rotary feedrate of 5 revs. per spindle revolution

5.26.4. Surface Speed Spindle Feedrate Programming G96

SYNTAX : G96 <AxisMask > ; Use surface speed prog. on Spindle 1

G296 <AxisMask > ; Use surface speed prog. on Spindle 2

G396 <AxisMask > ; Use surface speed prog. on Spindle 3

G496 <AxisMask > ; Use surface speed prog. on Spindle 4

EXAMPLES: G96 Y ; Y axis is radial axis to measure surface speed

G396 Y ; Y axis is radial axis to measure surface speed

The UNIDEX 600 Series controller provides the flexibility to specify spindle feedrates
(the S word) in either revolutions per minute (G96) or surface units (G97). The G96
mode allows the spindle feedrate for the specified spindle to be specified in user units of
surface (in./mm.) per minute. The active Gx96/Gx97 mode is indicated by bits 18-21 of
the Mode1 task parameter.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-103

In G96 mode, every 10 milliseconds, the position of the “radial axis” (the axis provided
in the G96 command) is read, and the spindle is directed to a speed given by the
following formulae:

RPM = v / (2πR)

Where, RPM is the resultant spindle rotational speed, v is the surface speed (the S word
value) converted to user units per minute, and R is the current value on the radial axis (in
user units). Note, that since this formulae is evaluated every 10 milliseconds, the actual
RPM will trail 10 milliseconds behind the current radial axis position.

The “R” value shown in the formulae is in “preset units”, which means it is after all
transformations, including presets and fixture offsets have been taken in account. For
example, if the center of a lathe is at X5, you can execute a G92 X0 when at X5, and now
the center of the lathe, as far as the spindle is concerned (the point where the spindle
speed goes infinite) is at X5.

When in G96 mode, the normal accel/decel parameters of the spindle are suspended
(allowing for instantaneous acceleration) and the velocity and acceleration are completely
under the control of the motion of “radial axis”. Therefore, you may easily accelerate the
spindle too fast, by moving the radial axis too fast, or by moving it to close to the center
of the spindle. If the spindle is under closed loop control, this can result in position or
current errors on the spindle.

However, in either G97 or G96 mode, the spindle speed will be limited by the
MaxFeedRateIPM machine parameter value. Therefore, in G96 mode, as the specified
radial axis approaches zero, the MaxFeedrateIPM parameter may be used to prevent the
spindle from being commanded to an infinite speed.

Note that in either G97 or G96 mode, the S word always specifies the spindle speed. If
you change modes with the spindle running, the S word value will be reinterpreted by the
new mode, and the spindle will accelerate/decelerate to the new speed immediately.
Furthermore, if you change from G97 to G96 mode with the spindle running, this can
cause a sudden “jerk” on the spindle (if it is not currently running at the speed appropriate
for the given radial axis value) because, as mentioned above, in G96 mode the spindle
accel/decel parameters are suspended. Also note that you must have the
ExecuteNumSpindles task parameter set properly to utilize more than one spindle.

The active Gx96/Gx97 mode is indicated by bits 18-21 of the Mode1 task parameter.

G-code Commands U600 CNC Programming Manual

5-104 Aerotech, Inc. Version 1.1

5.26.5. RPM Spindle Feedrate Programming G97

SYNTAX : G97 ; Spindle 1 feedrate in RPM

G297 ; Spindle 2 feedrate in RPM

G397 ; Spindle 3 feedrate in RPM

G497 ; Spindle 4 feedrate in RPM

EXAMPLES: G97 ; Spindle 1 feedrate in RPM

The UNIDEX 600 Series controller provides the flexibility to specify spindle feedrates
(the S word) in either revolutions per minute (G96) or surface units per minute (G97).
G97 allows the spindle feedrate for the given spindle to be specified in RPM.

The active Gx96/Gx97 mode is indicated by bits 18-21 of the Mode1 task parameter.

However, in either G97 or G96 mode, the spindle speed will be limited by the
MaxFeedRateIPM machine parameter value.

Note, that in either G97 or G96 mode, the S word always specifies the spindle speed. If
you change modes with the spindle running, the S word value will be reinterpreted by the
new mode, and the spindle will accelerate/decelerate to the new speed immediately. Also
note that you must have the ExecuteNumSpindles task parameter set properly to utilize
more than one spindle.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-105

5.27. Dominant Feedrate Overview (G98, G99)

A complex move contains both linear and rotary axes moving simultaneously in a
contoured (G1,G2,G3) move. These types of moves create a number of special problems,
in which one or more of the axes appear to be traveling at the wrong speed or
acceleration, and the programmer must read and understand the following in order to
properly perform complex moves. The following description and G98/G99 mode applies
only to complex moves. The first problem is that both the F and the E word speeds cannot
be obeyed at once. Refer to the following example code fragment:

In all examples here, X, Y, Z are linear axes, while B is a rotary axis. Suppose, for all
three examples, we begin at X=0, B=0, in G90 mode.

G90 G0 X0 B0 ;Goto {0,0}; use absolute coordinates from now on
 G1 X10 B90 F10 E1

If the F word is obeyed, then the G1 move finishes in 1 minute. However, if the E word is
obeyed, the move finishes in 15 seconds. The solution the Aerotech controller uses for
this problem is to have a mode that specifies which commanded velocity is dominant. In
the G99 mode (linear dominant) the E word is ignored during moves involving both
rotary and linear axes. Conversely, in the G98 (rotary dominant) mode, the F word is
ignored in complex moves. In each case, the type of axis whose speed word is ignored has
its velocity calculated based upon the move time of the other axis type, so that all axes
complete their moves simultaneously.

Unfortunately, due to the fact that the feedrate of the non-dominant axis is dictated by the
dominant axis motion, the speed of the non-dominant axis may be exceeded. Examine the
following code fragment, where X is a linear axis and B is a rotary axis.

G90 G0 X0 B0 ;Goto {0,0} use absolute coordinates from
;now on

G99 ;Set linear axis dominant
G1 X0.00016666 B180 E1 F1 ;(0.00016666= 1/6000)

Here the user specified linear dominance for the G1 command line, so the linear part of
the move must travel at the linear feedrate. However, since the distance the X axis travels
is small (relative to the B axis distance), the move must complete in a relatively short time
(1/100 of a second in this case). This forces the B axis to travel at 3000 RPM, which may
be too fast. The solution to this dilemma is to use the MaxFeedRateIPM /
MaxFeedRateRPM machine parameters to limit the speed of the motion.

A related problem is the acceleration during complex moves. The dominant type of
movement (rotary or linear) uses the acceleration instructed by the codes G63 through
G68. However, the non-dominant move is a slave to the dominant movement and may not
obey its acceleration parameters. If the acceleration ramping is time based (see G67), then
both types obey the acceleration time. However, if it is rate based (G68), then the non-
dominant axis does not follow any specified acceleration.

G-code Commands U600 CNC Programming Manual

5-106 Aerotech, Inc. Version 1.1

Keep in mind that regardless of the G99/G98 mode, if a CNC block moves only linear or
rotary axes, then the F and the E words, respectively, will be used. G98/G99 apply only to
complex CNC blocks (ones that move rotary and linear axes simultaneously).

See the example below:
 G99 G90 X1 B1 ; Here we use the F feedrate, because we are in G99 mode.
 G99 G90 B1 ; Here we use the E feedrate, even though we are in G99 mode.
 G99 G90 X0 B1 ; Here we use the E feedrate, even though we are in G99 mode.

The second and third examples are equivalent, even though the X axis is specified in the
third example, because the X target is the same as our current location, so no X motion
occurs. The active linear/rotary dominant mode is indicated by bit 4 of the Mode1 task
parameter.

5.27.1. Rotary Feedrate Dominant G98

SYNTAX: G98

EXAMPLE: G98

The G98 command specifies that the rotary feedrate (E) be considered dominant in
coordinated motion commands moving both linear and rotary axes. When operating in
this mode, the value of the E keyword determines the move duration, and the
corresponding feedrate for the linear axis is computed from the duration of rotary axes
motion. The active linear/rotary dominant mode is indicated by bit 4 of the Mode1 task
parameter.

Refer to the Dominant Feedrate Overview (Section 5.27) for more information.

EXAMPLE PROGRAM:

G98, G91 ;Make E-feedrate dominant
G1 X10. Y72. F100. E10.;Assuming X is linear and Y is rotary, use E-feedrate to calculate

;move time of 0.2 minutes. Linear feedrate used will be 50
;units/minute.

An axis must be designated as a linear or rotary axis by the Type machine parameter.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-107

5.27.2. Linear Feedrate Dominant G99

SYNTAX: G99

EXAMPLE: G99

The G99 command specifies that the linear feedrate (F) be considered dominant in
coordinated motion commands involving both linear and rotary axes. When operating in
this mode, the value of the F keyword determines the move duration, and the
corresponding feedrate for the rotary axis is computed. This command is the default. The
active linear/rotary dominant mode is indicated by bit 4 of the Mode1 task parameter.

Refer to the Dominant Feedrate Overview (Section 5.27) for more information.

EXAMPLE PROGRAM:

G99 ;Make F-feedrate dominant.
G1 X10. Y72. F100. E10. ;Assuming X is linear and Y is rotary, use F-feedrate to

;calculate a move time of 0.10 minutes. Rotary feedrate used
;will be 2 RPM.

An axis must be designated as a linear or rotary axis by the Type machine parameter.

G-code Commands U600 CNC Programming Manual

5-108 Aerotech, Inc. Version 1.1

5.28. Spindle Shutdown Modes (G100, G101)

5.28.1. Disable Spindle Shutdown Mode G100

SYNTAX: G100

EXAMPLE: G100

This G code disables the spindle shutdown mode, which is activated by the G101
command. This command is the default. The spindle shutdown mode is indicated by bit 7
of the Mode1 task parameter.

5.28.2. Enable Spindle Shutdown Mode G101

SYNTAX: G101

EXAMPLE: G101

This command enables spindle shutdown mode. The spindle shutdown mode status is
indicated by bit 7 of the Mode1 task parameter.

When the spindle shutdown mode is disabled (G100 is active), the spindle(s) will behave
independently of other motion in the following ways:

Spindle motion will not be affected by a feedhold or Abort (spindle will keep
rotating).

When the spindle shutdown mode is enabled, the spindle will react to feedhold and
motion aborts like any other axis, except that a feedhold release, subsequent to a feedhold
will not accelerate the spindle back up to speed.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-109

5.29. Modal Velocity Profiling (G108, G109)

5.29.1. No Deceleration to Zero Velocity Between Moves G108

SYNTAX: G108

EXAMPLE: G108

The G108 command is the inverse of a G109 command. Meaning, it forces the controller
to accelerate or decelerate between moves smoothly, as opposed to decelerating to zero
velocity between consecutive contoured (G1, G2, G3...) moves. G108 is a modal
command. This command is the default. G108 applies only to contoured motion. The
active no-decel/force-decel mode is indicated by bit 5 of the Mode1 task parameter.

When using G108, it is quite easy to construct sequences of moves that jerk one or
more axes by commanding instantaneous acceleration/deceleration. See Corners on
page 5-37 for details.

When using G108, if you want to blend two non-consecutive (other commands lie in-
between) moves, there are some issues the CNC programmer needs to be aware of.
See 5.40.3

5.29.2. Force Deceleration to Zero Velocity Between Moves G109

SYNTAX: G109

EXAMPLE: G109

The G109 command performs the same function as a G9 command, but operates modally.
It causes the controller to decelerate to zero velocity between consecutive contoured (G1,
G2, G3 ...) moves. Please see the G9 command for more details. G109 applies only to
contoured motion. The active no-decel/force-decel mode is indicated by bit 5 of the
Mode1 task parameter.

G-code Commands U600 CNC Programming Manual

5-110 Aerotech, Inc. Version 1.1

5.30. Circular Direction Codes (G110, G111)

5.30.1. Normal Circular Interpolation G110

SYNTAX: G110

EXAMPLE: G110

The UNIDEX 600 Series controller provides the user with the flexibility to change the
orientation of the axes used for circular interpolation. By default, circular interpolation
occurs as described in the description of the G2/G3 and G12/G13 commands, Plane
Select (G17/G18/G19 and G27/G28/G29) G-code groups, and the I/J/K keywords.
Table 5-9 defines these relationships. This command is the default. The active
inverse/normal circular orientation mode is indicated by bit 6 of the Mode1 task
parameter.

Table 5-9. G-Codes to Change Axes Used for Circular Interpolation

G-code Description in G110 Mode

G2 Circular Clockwise Rotation - Plane 1

G3 Circular Counterclockwise Rotation - Plane 1

G12 Circular Clockwise Rotation - Plane 2

G13 Circular Counterclockwise Rotation - Plane 2

The G110 command restores these default associations if a G111 command has been
previously executed.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-111

5.30.2. Inverse Circular Interpolation G111

SYNTAX: G111

EXAMPLE: G111

The UNIDEX 600 Series controller provides the flexibility to invert the direction of
circular motion. By default, circular interpolation occurs as described in the G2/G3 and
G12/G13 commands, the Plane Select (G17/G18/G19 and G27/G28/G29) G-code
groups, and the I/J/K keywords. The active inverse/normal circular orientation mode is
indicated by bit 6 of the Mode1 task parameter.

However, when operating in the inverse circular interpolation mode, the arc direction,
plane and circle center point keyword associations are reversed. Table 5-10 summarizes
the relationships that exist.

Table 5-10. Relationship of Arc Direction, Plane, & Circle Center point

G-code Description in G111 Mode

G2 Circular Counterclockwise Rotation - Plane 1

G3 Circular Clockwise Rotation - Plane 1

G12 Circular Counterclockwise Rotation - Plane 2

G13 Circular Clockwise Rotation - Plane 2

The G111 command sets these associations. These relationships are reset by the G110
command.

G-code Commands U600 CNC Programming Manual

5-112 Aerotech, Inc. Version 1.1

5.31. Block Delete Mode (G112, G113)

The Block Delete mode may be toggled via the Shift F9 key. This allows a program to
selectively skip CNC command lines which begin with the Block Delete operator ‘/’,
when Block Delete is active. For example, in the following program fragment,

/ HOME X Y ; skipped if block delete is active
G1 X5 Y2 F200.
/ G92 X0 Y0 ; skipped if block delete is active

the HOME and G92 command lines in the above example, will not execute if the Block
Delete mode is active. The second line containing the G1 command line will always
execute regardless of the state of the Block Delete mode state. Block delete may be
toggled within a program via the G112 and G113 commands.

If you are single stepping through a CNC program, the controller will always stop
prior to executing a line, even if that line is “skipped” due to a block delete.

5.31.1. Set Block Delete Mode G112

The G112 command sets the TASKMODE1_BlockDelete bit in the Mode1 task
parameter to 1. If this bit is true, the controller ignores subsequent CNC program lines
having the block delete symbol at the beginning of the line. The G113 command clears
this mode. The block delete mode state is indicated by bit 8 of the Mode1 task parameter.

5.31.2. Clear Block Delete Mode G113

The G113 command clears the TASKMODE1_BlockDelete bit in the Mode1 parameter.
This command is the default. The block delete mode state is indicated by bit 8 of the
Mode1 task parameter.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-113

5.32. Optional Stop Mode (G114, G115)

5.32.1. Set Optional Stop Mode G114

This command sets the TASKMODE1_OptionalStop bit in the Mode1 task parameter to
1. If this bit is on, all subsequent M1 codes are equivalent to M0. Otherwise, an M1 does
nothing. The G115 command clears this mode. The optional stop mode state is indicated
by bit 9 of the Mode1 task parameter.

5.32.2. Clear Optional Stop Mode G115

This command clears the TASKMODE1_OptionalStop bit in the Mode1 task parameter.
Refer to G114 command for more details. This command is the default. The optional
stop mode state is indicated by bit 9 of the Mode1 task parameter.

5.33. Dry Run Mode (G116, G117)

When Dry Run mode is active the axes are moved at the feedrate specified by the
DryRunLinearFeedrateIPM (or DryRunRotaryFeedrateRPM) task parameters regardless
of the feedrates specified in the program. This mode has no effect on G0 commands or
asynchronous motion commands. The Dry Run mode is enabled/disabled via the G116 /
G117 commands, or via the Window List menu on the Manual or Run Pages. The Dry
Run state is indicated by bit 13 of the Mode1 task parameter.

This mode is normally used for verifying the movement of a tool over an area in which
the workpiece (or fixture) has been removed.

The MaxFeedRateIPM and MaxFeedRateRPM machine parameter limits still apply
and will limit the feedrates.

5.33.1. Dry Run Mode Enabled G116

This command enables the Dry Run Mode. The dry run mode state is indicated by bit 13
of the Mode1 task parameter.

5.33.2. Dry Run Mode Disabled G117

This command disables the Dry Run Mode. The dry run mode state is indicated by bit 13
of the Mode1 task parameter.

G-code Commands U600 CNC Programming Manual

5-114 Aerotech, Inc. Version 1.1

5.34. Servo Update Rate (G130, G131)

5.34.1. 4 Kilohertz Servo Update Rate G130

SYNTAX: G130

EXAMPLE: G130

 The G130 command causes the UNIDEX 600 Series controller to update the servo loop
4000 times/sec (every .25 msec). This includes sampling the feedback devices(s) and
calculating a new command for the motor. When switching from 1K to 4K update, (G131
to G130) the user must adjust the gains as shown below. This command is the default.
This G code may be defined as a default on the Task Initialization Page of the
U600MMI-NT/95.

KP = KP*4
PGAIN = PGAIN/4

5.34.2. 1 Kilohertz Servo Update Rate G131

SYNTAX: G131

EXAMPLE: G131

 The G131 command sets the UNIDEX 600 Series controller to update the servo loop
1000 times/sec. (every 1 msec.). The normal process of sampling the feedback device(s)
and updating the command 4000 times per second is reduced. When switching from 4K to
1K, the user must adjust the gains as shown below. This mode may be preferred on
systems having a machine step size greater than 1 micron. The G130 command sets the 4
kilo-hertz servo loop update mode. This G code may be defined as a default on the Task
Initialization Page of the U600MMI-NT/95.

KP = KP/4
PGAIN = PGAIN * 4

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-115

5.35. Cutter Tool Offset Compensation Overview (G143, G144, G149)

Cutter tool Compensation will compensate for the length of your tool. The G143 adds the
tool offset to the length and the G144 command subtracts the offset. The G149 command
will cancel all offsets.

5.35.1. Activate Positive Cutter (Tool) Offsets G143

The G143 command activates cutter offsets and cutter length compensation, and adds
these values to the appropriate move targets. If you are already in cutter offsets
compensation mode, this command is ignored. The lead-on move, is defined as the next
contoured move on the same line as the G143, or on the line following the G143. You
must be in G1, G2 or G3 mode to execute this command. The active state of this
command is indicated by bit 12 of the Status3 task parameter.

Normally, when entering (G143, G144) and exiting (G149) Cutter Offset Compensation,
you provide a contoured move on the same line. For G143, G144, this move is called the
“lead-on” move, for G149 this is called the “lead-off” move. The lead-on and lead-off
moves must be a contoured move.

Lead-on and lead-off moves must be carefully constructed, so as not damage the tool or
part. Lead-on moves will ‘blend in’ the tool offsets gradually during the move. When a
lead-on move is completed, the cutter offsets are fully applied.

If you do not provide a “lead-on” move on the same line as the G143/G144, then, it will
use the next contoured move it executes, as the lead-on move. Any number of CNC
statements that are not contoured moves (except G41, G42, G40, G143, G144, and
G149) can be placed in-between the G143/G144, and the “lead-on” move. If it cannot
find a next contoured move to use as a lead-on, it will not enter cutter offset
compensation.

Cutter compensation is only intended for contoured moves (G1, G2, G3, G12, G13).
You may command non-contoured motion on axes that are not part of the cutter
compensation plane while in cutter compensation mode, however, this will lead to
undesirable results, since cutter compensation has no effect on the other types of
motion.

Cutter Offsets Compensation will not operate over multiple lines entered in MDI
mode, as after each MDI line, the cutter compensation is canceled.

HOMING disables cutter offset compensation.

G-code Commands U600 CNC Programming Manual

5-116 Aerotech, Inc. Version 1.1

5.35.2. Activate Negative Cutter (Tool) Offsets G144

G144 is identical to G143, except that the offsets (X and Y) and the tool length, as read
from the tool file are subtracted from the actual coordinates. See G143 for more details
on this code. The active state of this command is indicated by bit 15 of the Status3 task
parameter.

5.35.3. Deactivate Cutter (Tool) Offsets G149

The G149 command exits tool offset mode, which deactivates the two tool offsets, and
the tool length compensations. These three values are stored in the task parameters:
CutterXOffset, CutterYOffset, and CutterLength. However, normally one assigns to these
parameters via the Tool word.

The G149 command has no effect on tool radius compensation, please see G40 to
deactivate tool radius compensation.

Normally, when entering exiting Cutter Offset Compensation, you provide a contoured
move on the same line, this is called the “lead-off” move.

Lead-off moves must be carefully constructed, so as not damage the tool or part.

Lead-off moves will ‘blend out’ the tool offsets and tool length gradually during the lead-
off move, in order to remove compensation for the tool offsets. If you do not provide a
“lead-off” move on the same line as the G149, then, it will use the next contoured move it
executes, as the lead-off move. Any number of CNC statements that are not contoured
moves (except G41, G42, G40, G143, G144, and G149) can be placed in-between the
G40, and the “lead-off” move. If it cannot find a next contoured move to use as a lead-off,
it will not remove the tool offsets compensation.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-117

5.36. Scale Factor (G150, G151)

5.36.1. Clear Scale Factor G150

SYNTAX: G150

EXAMPLE: G150

Cancels the G151 Scale Factor command

5.36.2. Set Scale Factor G151

SYNTAX: G151 F<fExpression >

EXAMPLE: G151 F2.5

The G151 Scale Factor command will decrease or increase (scale) the part by the
indicated value. Scaling is modal, G150 disables scaling. A scale factor greater than 1
will increase the size of the part, a scale factor less than 1 will decrease the size of the
part. The same scale factor will be applied to all axes bound to the task, except spindles,
which will not be affected at all. You may also change each axes scale factor
independently via its ScaleFactor machine parameter, however, this has serious
limitations.

X

Y

Scale factor of 2
Without Scaling

Figure 5-37. Scale Factor Example

G150 and G151 must occupy their own line (no other CNC blocks on the line) You may
verify the current state of Scaling, via the ‘ScalingActive’ bit of the Status3 task
parameter as viewed with the AerStat.exe utility, or by looking for ‘G151’ in the active G
code display in the lower left of the UNIDEX 600 MMI run or manual screens.

The G151 Scalefactor command is not cumulative. That is, setting ScaleFactor=3, then
immediately setting Scalefactor=2 is equivalent to setting Scalefactor=2.

G-code Commands U600 CNC Programming Manual

5-118 Aerotech, Inc. Version 1.1

The programmed velocities are unaffected by scaling. The position registers as displayed
on the U600MMI, or reflected in any positions parameter (see Positions Overview) reflect
the positions after scaling has taken place. After scaling, all target positions connected
with motion, (X, Y and other axis names, as well as I, J, K and R) will be affected.
Coordinates provided in asynchronous motion like MOVETO and INDEX are also
affected by the scale factor. However, all other coordinates and parameters are unaffected
by the scale factor, including those provided in G codes: G92, G56 through G59, G84,
and G43. Also unaffected by the scale factor are the coordinates provided in the TRACK
and HANDWHEEL commands, and all tool lengths and diameters

Scaling of rotary axis coordinates is allowed also, however, this may cause rollover
beyond 360 degrees.

5.36.3. The Scaling Center

Scaling using absolute coordinates (G90) has an extra complication: the scaling center.
The following section elaborates on the scaling center. Keep in mind the scaling center is
only relevant when programming in absolute coordinates, therefore this section can be
ignored when programming in G91.

Scaling always occurs “around” the current point. So parts generated in absolute
coordinates will be centered around the point at which the scaling was activated. This
point is called the scaling center as illustrated below.

X

Y

•A

Program shape after a scale factor of 2 is

applied, when at point A. (scaling center)

Program shape.

Figure 5-38. Scaling Center Illustration

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-119

When using fixture offsets or presets (G92) with absolute coordinates (G90) and scaling,
the scaling center is measured in preset coordinates, as illustrated below.

X

Y

B

•A C•

•

First we scale at point A, drawing the rectangle in G90
mode. Then we move the software home to point B, with
a G92. Then we redraw the same rectangle, and the
result is that the scale center moves to point C.

Figure 5-39. Scaling Center Illustration 2

Scaling while in G90 mode with software presets may be confusing, due to the scaling
center. It is recommended that, in this situation you scale while at the absolute coordinate
{0,0}. Then the scaling center will always be at the software home. You may change the
scaling center by repeating a G151 with the same scale factor at a different point. Note
that, when scaling has been applied, it should be removed via the G150 command. Re-
scaling via another G151 command, with a factor of one will not remove scaling properly
because it will not reset the scaling center to {0,0}.

5.37. Suspend All Fixture Offsets G153

SYNTAX: G153~<CNC Block >

EXAMPLE: G153 G1 X10

The G153 command suspends fixture offsets (i.e. performs a G53) for one CNC block,
the move on the same line as the G153. A G153, with no move on that line, has no effect.
Therefore, a CNC block containing a G153 command will ignore all active fixture offsets.

G-code Commands U600 CNC Programming Manual

5-120 Aerotech, Inc. Version 1.1

5.38. Rotary Axis Acceleration Rates (G165, G166)

5.38.1. Set Acceleration Rate (for Rotary Type Axes) G165

SYNTAX: G165~F<fExpression> ; Where the expression is acceleration rate

G165~P<fExpression> ; Where the expression is acceleration rate

EXAMPLE: G165 F20.0 ; Sets acceleration rate to 20 deg/sec/sec

When accelerating a rotary type axis, using the rate based parameters (G68), the
UNIDEX 600 Series controller uses the AccelRateDPS2 task parameter as the
acceleration value. This parameter can also be set (for the current task) with a G165
command. This rate is specified in degrees/second/second. The G165 setting is ignored if
the acceleration is time based (G67). The accel rate may follow either an F or P keyword,
as shown in the syntax definition above.

Note that the rate is applied over the vectorial distance of the move. For example, if a
G90 B1 C1 executes, then the specified rate is correct over the distance of 1.414 inches,
not 1 inch.

G165 only applies when all the axes in the move are of rotary type or if the move contains
both rotary and linear axes and the dominance of the move is rotary (refer to G98/G99
Overview in section 5.27 for details on axes dominance). See G65 if the axes are linear or
if the dominance is linear.

5.38.2. Set Deceleration Rate (for Rotary Type Axes) G166

SYNTAX: G166~F<fExpression> ; Where the expression is deceleration rate

G166~P<fExpression> ; Where the expression is deceleration rate

EXAMPLE: G166 F20.0 ; Sets deceleration rate to 20 deg/sec/sec

When decelerating a rotary type axis, using the rate based parameters (G68), the
UNIDEX 600 Series controller uses the DecelRateDPS2 task parameter as the
deceleration value. This parameter can also be set (for the current task) with a G166
command. This rate is specified in degrees/second/second. The G166 setting is ignored if
the deceleration is time based (G67). The decel rate may follow either an F or P keyword,
as shown in the syntax definition above.

Note that the rate is applied over the vectorial distance of the move. For example, if a
G90 B1 C1 executes, then the specified rate is correct over the distance of 1.414 inches,
not 1 inch.

G166 only applies when all the axes in the move are of rotary type or if the move contains
both rotary and linear axes and the dominance of the move is rotary (refer to G98/G99
Overview in section 5.27 for details on axes dominance). See G66 if the axes are linear,
or if the dominant axes type is linear.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-121

5.39. Block Delete2 Mode (G212, G213)

The Block Delete2 mode may only be activated under CNC program control. This allows
a CNC program to selectively skip CNC command lines which begin with the Block
Delete 2 operator ‘/’2, when Block Delete2 is active. For example, in the following
program fragment,

/2 HOME X Y ; skipped if block delete 2 is active
G1 X5 Y2 F200.
//2 G92 X0 Y0 ; skipped if block delete or block delete 2 is ; active

the HOME and G92 command lines in the above example, will not execute if the
specified Block Delete mode is active. The second line containing the G1 command line
will always execute regardless of the state of the Block Delete mode state. Note, that the
G92 CNC program line will not execute if either Block Delete or Block Delete 2 is on.
Block Delete2 may be toggled within a CNC program via the G212 and G213 commands,
but cannot be toggled from the U600 MMI.

If you are single stepping through a CNC program, the controller will always stop
prior to executing a line, even if that line is “skipped” due to a block delete.

5.39.1. Set Block Delete2 Mode G212

The G212 command sets bit 22 in the Mode1 task parameter to 1. If this bit is true, the
controller ignores subsequent block delete2 lines. See Block Delete2 for more details. The
G213 command clears this mode.

5.39.2. Clear Block Delete2 Mode G213

The G213 command clears bit 22 in the Mode1 parameter. See Block Delete2 for more
details. This command is the default.

G-code Commands U600 CNC Programming Manual

5-122 Aerotech, Inc. Version 1.1

5.40. CNC Block Look-Ahead (G300, G301)

Look-ahead is the situation where the controller is about to execute a contoured (G1 / G2
/ G3) move, but needs information on the next contoured move (G1/ G2 / G3) before it
can begin the first move. Look-ahead occurs only in the five cases shown below
(Table 5-11), the first of which is by far the most common. Reference each G code for
more information on how look-ahead is used in each particular case. Normally, the
controller will look-ahead only one move, but multiple CNC block look-ahead may be
enabled via the G301 command. The user is strongly advised to read and understand the
following, particularly the situations concerning decel forcing and look-ahead failure, in
order to achieve the desired results.

Table 5-11. The Five Look-Ahead Cases

Case Reason Required Next Move
Found

If Decel
Forced

Failed to Find
Next Move

1. G108 mode, and no G8 /
G9 on line

Decel at end of
move?

No decel Yes decel Yes decel

2. BlendMaxAccelLinearIPS2
or BlendMaxAccelCircleIPS2
not zero

Decel at end of
move?

No decel Yes decel Yes decel

3. ChordicalSlowDownMsec
not zero

Decel at end of
move?

No decel Yes decel Yes decel

4. In G21 / G22 mode
(Normalcy)

Norm. align.
needed ?

Yes align
move

Yes align
move

No align move

5. In G41 / G42 mode (Cutter
comp.)

Link move
needed?

Yes link
move

Yes link move No link move

In all cases listed in column one in the table above, the controller will look-ahead to the
next CNC program block(s) for the next G1/G2/G3 move, in order to answer the question
shown in the second column above: “Reason Required.” There are three possible answers,
as shown in columns 3, 4 and 5 in the table above. The paragraphs below provide more
details.

It is important to keep in mind that if none of the cases described in the first column are
true, the controller will not look-ahead. The programmer should keep in mind that look-
ahead takes CNC execution time, and if that is in demand (see Motion Queue Starvation)
that these situations should be avoided.

Look-ahead does not require that the next move immediately follow the first move, in
order for it to find the second move. It will look past non-motion statements such as
assignments, to find the second move (and the third and fourth move, and so on, if in
G301 mode, and cases 1, 2 or 3 above apply). However, there are definite limitations on
which statements the controller is able to look past.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-123

There are situations where the look-ahead process can “fail” to find a next move (for
example, if the current move is the last move in the program). In these cases the controller
follows the action shown in the last column of the table above (no warning or error
messages will be generated). In addition, there are cases where although there is a next
move, there exists a intervening decel forcing condition between the current move and the
next move (for example if a G4 lies between the two moves. For the most common uses
of look-ahead (cases 1,2 and 3 above) decel forcing” cases are identical to look-ahead
failure: the controller forces a deceleration at the end of the move. However for cases 4.
and 5, “decel forcing” cases are not considered failures (see column three in table above).
For example, Normalcy (case 4) demands that a normalcy alignment move be inserted in-
between any two moves at a right angle. If the current move is the last move in the
program, this is a “look-ahead failure”, and there is no normalcy alignment after the
current move. However if a G4 lies between the two moves, a normalcy alignment move
will still takes place.

5.40.1. Disable Multi-Block Look-Ahead G300

The G300 command disables the multiple CNC block look-ahead process enabled by the
G301 command.

5.40.2. Enable Multi-Block Look-Ahead G301

The G301 command enables the multiple CNC block look-ahead process. Normally, the
controller will look ahead only one block. However, when in G301 mode, the number of
CNC program blocks that will be used within the look-ahead process is determined by the
MaxLookAheadMoves task parameter. The current status of multi-block look-ahead is
reflected by bit #24 of the Mode1 task parameter.

CNC block look-ahead is the process of examining future CNC program lines to see if
certain conditions will occur and to take appropriate actions when these conditions do
occur. It must be emphasized that these conditions, and the actions taken when they are
detected are the same, whether you are looking one move ahead (G300) or multiple
moves ahead (G301). G301 just increases the scope of the controllers pre-processing.
Furthermore, it must be emphasized that the look-ahead process has certain limitations,
that may not be obvious.

It is recommended that G311 be used with G301. Multi -block look ahead increases the
number of computations made by the controller each move, which can lead to Profile
Queue Starvation. However, G311 can be used to speedup multi-block look-ahead, so as
to prevent starvation. G311 does have two limitations.

5.40.3. CNC Block Look-Ahead Conditions that Force (G9) Deceleration

Even if the user requests profile blending (does not place a G9 or G8 on the line, and is in
G108 mode), there are some exceptions where the controller forces deceleration at the
end of the move (and subsequent acceleration at the beginning of the next move).

G-code Commands U600 CNC Programming Manual

5-124 Aerotech, Inc. Version 1.1

Multiple CNC block look-ahead may be enabled via the G301 command. These cases are
detailed below:

A. Perhaps the simplest example of an enforced G9 move is when the user is running in
single step mode. In this case, clearly the motion must decelerate to zero velocity
between the two contoured moves.

B. The controller will force a G9 when it detects any time consuming activity that occur
in-between the two moves to be blended. If the controller tried to blend moves in
such situations, then a sudden break or drop in the velocity command would occur, so
to avoid this, the controller forces deceleration. The controller will also make other
statements force deceleration that might cause inconsistent motion, if you tried to
blend them through them. A list of all statements that force deceleration are shown
below:

Dwell Commands - G4, WAIT, M00, M01 (but only if optional stop is
on)

Any callback command - DATAxxx, FILExxx, MSGxxx,
LOADCAMTABLE, CALLBACK, CALLDLL, etc.

Other motion codes - G0, G45, G46, G47, G84, G93, G94, G95, Home,
or any Asynchronous motion commands

Parameter sets - POS, RotateX, RotateY, RotateAngleDeg,
IgnoreAxesMask, DryRunLinearFeedRateIPM,
DryRunRotaryFeedRateRPM

Other - G83, G84, G51, PROBE, all PSO commands

Statements causing lookahead failure (5.40.4).

C. The following modal commands will also force deceleration, but only if they change
the current mode. For example, if a G108 command is executed between the two
moves, then it forces deceleration if and only if the current mode is not G108.

Blended Motion - G108, G109

Accel/Decel - G63, G64, G67, G68

5.40.4. CNC Block Look-Ahead Failures

A. The controller gives up after searching a predefined number of lines, if it can not find
the next move (look-ahead fails). This is determined by the MaxLookAheadMoves
task parameter.

B. The controller gives up looking for the next move, if it encounters any of the
following statements. As noted below, the controller can not look-ahead through
FARCALLs or FARJUMP’s.

Program control - M02, M30, M47, FARCALL, FARJUMP

Axis Control Commands - MAP, BIND, CAPTURE, RELEASE, FREE

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-125

Camming Commands - TRACK, SYNC, CFGMASTER, SLEW, AFCO

Other - G53 – G59, G92, M41, M42

Dominant Feedrate Mode- G98, G99 (only if the mode changes)

C. The controller does not evaluate global, task or IO variables, when looking ahead,
therefore, if the next move is based upon these variables, the move may be in error.
This obscure situation affects only cases 2, 3, 4 and 5 in the table. The following
code fragment illustrates this potential error:

$GLOB0 = 100
G90 G1 X$GLOB0 ; First move
$GLOB0 = 200
G90 G1 X$GLOB0 ; Second move

There are many other similar examples in which the look-ahead will error when contoured
moves use global or task variables as the move target. The way to avoid these situations is
by using program variables. Look-ahead does correctly evaluate these, while looking for
the next move.

D. When in the Program Queue Mode, look ahead will fail if it runs out of downloaded
CNC program lines before finding the next move.

E. The controller will not execute canned functions, ON’s or ONGOSUBS while doing
look-ahead.

In some situations the look-ahead process will find an error on a line that is ahead of the
current line (the most common problem is an improperly written G2/G3). This can be
confusing, because the line the controller is on is not the line where the error is seen (see
example below).

G108
G1 X 10 ; controller generates error on this line: “no circular offsets”
G2 X5 ; this is the bad line, no circular offsets

In this simple program fragment, the controller will generate the error on the second line.
However, it will indicate line 3 in the TaskWarning task parameter, indicating the third
line is really the culprit.

Multiple block look-ahead may be enabled via the G301 command.

G-code Commands U600 CNC Programming Manual

5-126 Aerotech, Inc. Version 1.1

5.41. High Speed Machining (G310, G311)

5.41.1. Disable High Speed Machining G310

The G310 command disables the High Speed Machining mode enabled by the G311
command.

5.41.2. Enable High Speed Machining G311

The G311 command enables high speed buffering, which can be used to speed-up the
multiple CNC block look-ahead process. In this mode, the controller will store results of
previous move’s look-ahead computations, and use them for future computations. The
speedup can be such that the controller will operate as fast as it would with only single
block look-ahead (no G301).

However, this mode has limitations.

The current status of high speed buffer mode is reflected by bit #26 of the Mode1 task
parameter.

G311 has no effect, unless G301 is active.

5.41.3. High Speed Machining Limitations

If the MFO is changed during program execution, the speedup process is impaired, and
G311 may have little or no speedup effect.

If a “jump” is encountered (includes if, goto, while, repeat, farcall, and call statements)
the controller will abandon all pre-computed results, since it can no longer be aware of
what might have changed between compute time and usage time. This will cause G311 to
have little or no speedup effect, during and for some time after the “jump” is encountered.

If a move uses variables in the target position or speed, and the value of these variables is
“externally” changed during program execution, then the look-ahead process may produce
wrong results (force slowdowns when none necessary, or not forcing then when they are
necessary). This caveat applies only when the variable values are “externally” changed,
i.e. from the variable inspector, or from another task. Variable values changed WITHIN
the current CNC task are OK.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-127

5.41.4. Continue when Velocity command is Zero G360

SYNTAX: G360

EXAMPLE: G360

In G360 mode the controller will never wait for in-position, before proceeding to the next
CNC block, it will continue on with the next CNC program line when the velocity
command is zero. The modal status of the G360 command is indicated by bit 27 of the
Mode1 task parameter.

5.41.5. Wait till In-Position G361

SYNTAX: G361

EXAMPLE: G361

Synchronous motion commands that decelerate to zero velocity do not allow CNC
program execution to continue to the next program block until motion is done. This
applies to the all of the following types of motion:

G0

G1 / G2 / G3 with a G9 on the CNC program line

G1 / G2 / G3 when G109 mode is active

G1 / G2 / G3 when CNC block look-ahead enforces a G9 slowdown to zero velocity at
the end of the move

ENDM

These motion commands are done when the velocity command reaches zero (the axes are
not being commanded to move). However, when G361 mode is active, the controller will
also wait for all axes to be in position, before continuing on with the next CNC program
block. The modal status of the G361 command is indicated by bit 27 of the Mode1 task
parameter.

G-code Commands U600 CNC Programming Manual

5-128 Aerotech, Inc. Version 1.1

5.42. M-codes

In general, M-codes perform miscellaneous I/O functions from within parts programs.
The function associated with each M-code vary significantly. However, in most cases they
either control program execution, spindle or feedrate operation. Custom M codes may be
assigned.

This section does not address the use of M-codes for input or output functions. Refer
to Chapter 7 for this functionality. This section only details those M-codes used for
program and spindle control.

5.42.1. Program Stop M0

SYNTAX: M0

EXAMPLE: M0

Pauses program execution. Pressing the cycle start button restarts program execution.

5.42.2. Optional Stop M1

SYNTAX: M1

EXAMPLE: M1

The functionality of this command depends upon the current state of the
TASKMODE1_OptionalStop bit in the Mode1 task parameter (see G114 / G115). If this
bit is on, the task responds to this M-code as described in the M0 command. Otherwise,
this M-code is ignored. The default condition is off, meaning M1 is ignored.

Use of this command permits the user to interrupt program execution at a specific point
when an abnormal condition occurs, but does not require operator intervention under
normal circumstances.

5.42.3. End of Program M2

SYNTAX: M2

EXAMPLE: M2

This command ends the CNC program. The user cannot continue after a M2, they must
restart the program.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-129

5.42.4. Spindle On Clockwise M3, M23, M33, M43

SYNTAX: M3 ; Spindle #1 On Clockwise
M23 ; Spindle #2 On Clockwise
M33 ; Spindle #3 On Clockwise
M43 ; Spindle #4 On Clockwise

EXAMPLE: M3 ; Spindle #1 On Clockwise

This command causes the specified spindle to begin rotating clockwise (CW). It will
accelerate (as defined by the ACCELMODE axis parameter) up to the target speed. The
target speed of the spindle is determined by the S keyword, as well as the current
operational mode or MDI mode in respect to the Spindle Speed G-code group. Up to four
spindles may be defined. If the spindle is rotating CW no action will take place, if it is
rotating CCW then it will decelerate to zero and accelerate CW up to the S word. This M
code will enable the drive if it is not already enabled. M codes M3/M23/M33/M43 set
bits 0 through 3 of the Status2 task parameter, respectively. This command is complete
only when the spindle has accelerated up to the commanded speed.

Note that you must have the ExecuteNumSpindles task parameter set properly to
utilize more than one spindle.

5.42.5. Spindle On Counterclockwise M4, M24, M34, M44

SYNTAX: M4 ; Spindle #1 On Counterclockwise
M24 ; Spindle #2 On Counterclockwise
M34 ; Spindle #3 On Counterclockwise
M44 ; Spindle #4 On Counterclockwise

EXAMPLE: M4 ; Spindle #1 On Counterclockwise

This command causes the spindle specified to begin rotating counter-clockwise (CCW). It
will accelerate (as defined by the ACCELMODE axis parameter) up to the target speed.
The target speed of the spindle is determined by the S keyword, as well as the current
operational mode or MDI mode in respect to the Spindle Speed G-Code group. There are
four spindles available. If the spindle is rotating CCW no action will take place, if it is
rotating CW then it will decelerate to zero and accelerate CCW up to the S word. This M
code will enable the drive if it is not already enabled. M codes M4/M24/M34/M44 set
bits 0 through 3 of the Status2 task parameter, respectively. This command is complete
only when the spindle has accelerated up to the commanded speed.

Note that you must have the ExecuteNumSpindles task parameter set properly to
utilize more than one spindle.

G-code Commands U600 CNC Programming Manual

5-130 Aerotech, Inc. Version 1.1

5.42.6. Spindle Off M5, M25, M35, M45

SYNTAX: M5 ; Spindle #1 Off
M25 ; Spindle #2 Off
M35 ; Spindle #3 Off
M45 ; Spindle #4 Off

EXAMPLE: M5 ; Spindle #1 Off

This command causes the spindle to decelerate to zero velocity when this command is
executed. (as defined by the DECELMODE axis parameter). The spindle stops moving by
being disabled (spindles with large inertial loads will free-wheel to a stop). There are four
spindles available, per task. If the spindle is not rotating, no action takes place. M codes
M5/M25/M35/M45 clear bits 0 through 3 of the Status2 task parameter, respectively.
This command is complete when the commanded spindle velocity has reached zero,
independent of the in-position limit.

5.42.7. Spindle Off/Reorient M19, M219, M319, M419

SYNTAX: M19 ; Spindle #1 Off/Reorient

M219 ; Spindle #2 Off/Reorient

M319 ; Spindle #3 Off/Reorient

M419 ; Spindle #4 Off/Reorient

EXAMPLE: M19 ; Spindle #1 Off/Reorient

This command causes the spindle to move to the zero position at the current S feedrate.
This M code will decelerate the spindle to zero, then move it back to the zero position in
the shortest distance. It will not disable the axis. This command should only be used for
servo driven (closed loop) spindle axes. M codes M19/M219/M319/M419 set bits 0
through 3 of the Status2 task parameter, respectively.

5.42.8. Restart Program Execution and Wait for Cycle Start M30

SYNTAX: M30

EXAMPLE: M30

Program execution immediately returns to the first executable line of the first program (if
this is encountered in a nested, called program, execution begins at the top of the first
program and all nested calls, while loops, etc., are canceled) and awaits a cycle start
command to resume program execution. All modal information remains unchanged and
user defined (DVAR) variables are not redefined; their value remains unchanged.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-131

5.42.9. Machine Lock Mode

The Machine Lock mode sets the SIMULATION axis parameter to 1 for all axes bound
to the task. This mode differs from simulation mode, in that whenever the machine is
unlocked, the position registers are updated with the current simulated positions. In
essence, a preset (or offset) is introduced into the system. The Machine Lock mode is
enabled/disabled via the M41 / M42 M codes, or via the Window List menu on the
Manual or Run Pages. The Machine Lock state is indicated by bit 25 of the Mode1 task
parameter.

Note: When a HOME command is executed in this mode, the position is set to the value
of the HomeOffsetInch (HomeOffsetDeg for rotary axes) machine parameter, and the
“homed” bit of the SERVOSTATUS axis parameter will be set. Upon exiting this mode
the homed bit will be cleared if the axis was homed while in this mode.

5.42.10. Machine Lock Enabled M41

This command enables the Machine Lock mode. The active state of the machine lock
mode is indicated by bits 25 of the Mode1 task parameter.

5.42.11. Machine Lock Disabled M42

This command disables the Machine Lock mode. The active state of the machine lock
mode is indicated by bits 25 of the Mode1 task parameter.

5.42.12. Restart Program Execution M47

SYNTAX: M47

EXAMPLE: M47

Program execution immediately returns to the first line of the first program (if this is
encountered in a nested, called program, execution begins at the top of the first program.
and all nested calls, while loops, etc., are canceled) and begins execution from there. All
modal information remains unchanged.

G-code Commands U600 CNC Programming Manual

5-132 Aerotech, Inc. Version 1.1

5.42.13. Feedrate Override Lock M48

SYNTAX: M48

EXAMPLE: M48

This command disables usage of feedrate override controls, located within the U600
MMI. It sets the TASKMODE1_MFOLock bit (11) in the Mode1 task parameter.

5.42.14. Feedrate Override Unlock M49

SYNTAX: M49

EXAMPLE: M49

This command is intended to enable usage of feedrate override controls; the ones located
within the U600 MMI. It clears the TASKMODE1_MFOLock bit (11) in the Mode1 task
parameter. This command is the default.

5.42.15. Spindle Feedrate Override Lock M50

SYNTAX: M50

EXAMPLE: M50

This command disables usage of spindle feedrate override controls; the ones located
within the U600 MMI. It sets the TASKMODE1_MSOLock bit (12)in the Mode1 task
parameter. It disables the MSO for all spindles.

5.42.16. Spindle Feedrate Override Unlock M51

SYNTAX: M51

EXAMPLE: M51

This command enables usage of spindle feedrate override controls, the ones located
within the U600 MMI. It clears the TASKMODE1_MSOLock bit in the Mode1 task
parameter. It enables the MSO for all spindles. This command is the default.

U600 CNC Programming Manual G-code Commands

Version 1.1 Aerotech, Inc. 5-133

5.42.17. Loop over Near Call to Subroutine M97

SYNTAX: M97 L<fexpression>~P<integer>

EXAMPLE: M97 L10 P2000

M97 calls a subroutine, a specified number of times. The call must be a near call (the
subroutine must be defined with a DFS, and in the same CNC program the M97 is used
in). See the M98 command for looping over far calls. You cannot pass parameters to the
subroutine with the M97 command. See the CALL command to call subroutines with
parameters.

The L word specifies the number of times to call the subroutine. If the L word is omitted,
the subroutine will be called once.

The P word identifies the subroutine. The beginning of the subroutine must be defined by
an N code label that matches the integer specified in the P word (see the example below).
Furthermore, you must specify the #makencodeslabels statement at the top of your
program. You must end the subroutine with a RETURN statement, or the last statement of
the subroutine must be the last statement in the CNC program.

EXAMPLE:
#makencodeslabels ; You must have this statement at top of program !

...

...
$GLOBAL0 = 0
M97 L10 P2000 ; at this point, $GLOBAL0 is now 20
M02
...

N2000 $GLOBAL0 = $GLOBAL0 + 2
N2001 RETURN

5.42.18. Loop over Far Call to Subroutine M98

SYNTAX: M98 L<fexpression>~P<integer>

EXAMPLE: M98 L10 P2000

M98 calls a subroutine, a specified number of times. The call is a far call, and
consequently the subroutine may be within any CNC program. However, see M97 for a
simpler way of looping over subroutines that in the same file as the calling statement. You
cannot pass parameters to the subroutine with the M98 command. See the FARCALL
command to call subroutines with parameters.

The L word identifies the number of times to call the subroutine. If the L word is omitted,
the subroutine will be called once.

The P word identifies the subroutine. The beginning of the subroutine must be defined by
an N code label, that matches the integer provided in the P word (see the example below).
Furthermore, you must have a #makencodeslabels statement at the top of the CNC
program containing the called subroutine. You must end the subroutine with a RETURN
statement, or the last statement of the subroutine must be the last statement in the CNC
program.

G-code Commands U600 CNC Programming Manual

5-134 Aerotech, Inc. Version 1.1

EXAMPLE:
; File1.pgm

...
$STRTASK1 = “file2.pgm”
$GLOBAL0 = 0
M98 L10 P2000
; at this point, $GLOBAL0 is now 20

; File2.pgm

#makencodeslabels ; You must have this statement at the top of program !
...

N2000 $GLOBAL0 = $GLOBAL0 + 2
N2001 RETURN

5.42.19. Spindle On Clockwise Asynchronously M103, M123,
M133, M143

SYNTAX: M103 ; Spindle #1 On Clockwise
 M123 ; Spindle #2 On Clockwise

M133 ; Spindle #3 On Clockwise
M143 ; Spindle #4 On Clockwise

EXAMPLE: M103 ; Spindle #1 On Clockwise

This command causes the specified spindle to begin rotating clockwise (CW). The speed
of the spindle is determined by the S keyword, as well as the current operational mode or
MDI mode in respect to the Spindle Speed G-code group. Up to four spindles may be
defined. If the spindle is rotating CW no action will take place, if it is rotating CCW then
it will decelerate to zero and begin accelerating CW up to the S word. It will not wait for
the spindle to accelerate up to full speed. This M code will enable the drive if it is not
already enabled. M codes M3/M23/M33/M43 set bits 0 through 3 of the Status2 task
parameter, respectively.

5.42.20. Spindle On Counter-Clockwise Asynchronously M104, M124,
M134, M144

SYNTAX: M4 ; Spindle #1 On Counter-Clockwise
 M24 ; Spindle #2 On Counter-Clockwise

M34 ; Spindle #3 On Counter-Clockwise
M44 ; Spindle #4 On Counter-Clockwise

EXAMPLE: M4 ; Spindle #1 On Counter-Clockwise

This command causes the spindle specified to begin rotating counter-clockwise (CCW).
The speed of the spindle is determined by the S keyword, as well as the current
operational mode or MDI mode in respect to the Spindle Speed G-Code group. There are
four spindles available. If the spindle is rotating CCW no action will take place, if it is
rotating CW then it will decelerate to zero and begin accelerating CCW up to the S word.
It will not wait for the spindle to accelerate up to full speed. This M code will enable the
drive if it is not already enabled. M codes M4/M24/M34/M44 set bits 0 through 3 of the
Status2 task parameter, respectively.

∇ ∇ ∇

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-1

CHAPTER 6: EXTENDED COMMANDS

In This Section: Page
• Introduction.. 6-1
• Motion with Extended Commands ... 6-2
• Host vs. Axis Processor Based Commands .. 6-2
• RS-447 Extended Commands... 6-4

6.1. Introduction

In addition to G-code programming, the UNIDEX 600 Series controller provides a set of
commands that permit the user to control program flow and perform other miscellaneous
functions. These commands are the RS-447 extended command set, or the extended
command set. This chapter contains a discussion of each extended command.

Table 6-3 is an alphabetical listing and summary of all extended commands. In addition,
all of the commands within this chapter are in alphabetical order. Many commands have
alternate forms, for example, the GOTO and JUMP keywords refer to the same command.
In the syntax and examples only one form is shown, but the implication is, the user can
use the other form as well.

We strongly recommend the user read Chapter 5, Sections 5.1.1. through 5.1.9.,
before undertaking any motion from the CNC.

The user can freely mix extended command code lines and G-code lines in a program, but
not within the same CNC block (program line).

All “PSOx” commands (e.g., PSOD, PSOP, etc.) require Aerotech’s optional PSO-
PC, Position Synchronized Output Board (Laser Firing Card).

The reader should note that a number of basic CNC language elements used in extended
commands are described in Chapter 3, not here. Table 6-1 directs the user on where to
find descriptions of these items.

Table 6-1. Where to Find Details

Term An Example Another Example Reference

<fExpression> 7*6+$GLOB0 7.8 Section 3.7

<CNCMask> X Y z x Section 3.4

<axisPoint> X55.6 Z5 Z$GLOB0 Section 3.6.1.2

Motion Details n/a n/a See 5.1.1 – 5.1.9

Table 6-2 details the extended command categories.

Extended Commands U600 CNC Programming Manual

6-2 Aerotech, Inc. Version 1.1

Table 6-2. Extended Command Categories

Controller Based Examples

Asynchronous Motion STRM, ENDM, INDEX, OSC, HOMEASYNC, MOVETO

Synchronous Motion HOME, REF, (All motion G codes)

Program Control IF, ELSE, WHILE, FARCALL, GOTO, DVAR, RETURN ...

Axis Control MAP, BIND, FREE

Continuous Monitoring ON, ONGOSUB

Miscellaneous PROBE, HANDWHEEL

Callback Based Examples

File Handling FILEOPEN, FILEWRITE, FILECLOSE, FILEREADINI...

Data Display MSGxxx Commands

External .exe Execution EXE, CALLDLL

Data Collection DATASTART, DATASTOP

PSO-PC Card Based Examples

Laser Firing, etc. PSOD, PSOF, PSOP, PSOS, PSOT

6.2. Motion with Extended Commands

The UNIDEX 600 controller can perform two types of motion: synchronous motion and
asynchronous motion. All extended motion commands except HOME use asynchronous
motion. Please see Chapter 5, for information on the differences between the two types of
motion.

6.3. Host vs. Axis Processor Based Commands

There are two types of extended commands: axis processor (controller) based and
callback based. All G-codes and most extended commands are controller based. Only a
small number of extended commands are callback based.

6.3.1. Axis Processor Based Extended Commands

Axis processor (controller) based commands execute exclusively on the controller. After
the host PC compiles, downloads, and begins program execution, the program runs
independently on the controller. These include commands in the following categories:
asynchronous motion, synchronous motion, program control, and continuous monitoring.
All G-code and extended commands except for callback commands execute this way.

6.3.2. Host Based Extended Commands

Callback commands are special commands that require assistance from the host PC. For
example, the controller cannot access files on the PC, so when a file access command is
encountered on the controller, it passes the command back to the host PC to execute.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-3

Another example is the extended commands that display text. Since the controller cannot
write to the display, it must pass the data back to the host PC to display on the screen.

The callback command is initiated by an interrupt to the PC. The process can be
summarized as follows:

1. The UNIDEX 600 begins execution of a callback command.

2. An interrupt is generated by the UNIDEX 600 card.

3. The device driver detects the interrupt and signals the host application (normally the
MMI600-NT).

4. A host application (U600MMI-NT/95) retrieves the callback data and carries out the
appropriate function.

5. Upon completion of the callback command, the host application (MMI600-NT) tells
the UNIDEX 600 to continue.

6. The UNIDEX 600 executes the next program line.

For a more detailed description of callback commands, refer to the Interrupt and Event
Handling section in the UNIDEX 600 Series User’s Guide, P/N EDU157. For
information on implementing a custom callback command, see TN0004, in the online
help file.

Some callback commands are: MSGxxx, EXE, CALLDLL, and DATASTART.

All Callback commands will set the ErrCode task parameter, if an error occurs during
the commands execution.

6.3.2.1. Time-outs

A host application program must be running on the PC in order to respond to the callback.
The host program normally used for this purpose is the UNIDEX 600 MMI. If there is no
host program running, there is no response to the interrupt and the controller times out
after a specific time. The CallbackTimeoutSecs task parameter can adjust the time.

Another common occurrence is the interrupt on the card does not agree with the interrupt
registered in the registry in Windows NT/95. This also causes a time-out.

6.3.2.2. Error Returns from the CallBack Commands

The host PC must have a method of returning error information to the controller. For
example, if the FILEOPEN failed because a file did not exist, the CNC program must
have a way to recognize this and the ErrCode task parameter serves this purpose. If the
ErrCode value is non-zero after a callback command, then an error occurred during the
execution of the callback command on the host PC. Refer to the specific callback
command to find out what the error codes (non-zero) mean.

Extended Commands U600 CNC Programming Manual

6-4 Aerotech, Inc. Version 1.1

It is important to understand that the controller is not inherently aware of the ErrCode
value. In other words, the CNC program continues after a FILEOPEN command,
regardless of whether the FILEOPEN failed and set the ErrCode. It is the CNC
programmer’s responsibility to check the ErrCode in the CNC program and direct the
proper error action. See the example in the following section for clarification.

6.3.2.3. Return Values from the Callback Commands

In addition to the error status, some callback commands return information in a floating
point value. For example, a FILEOPEN command must return the fileHandle used by
any subsequent FILEWRITE commands. This information can be captured by assigning
the extended command to a variable of the programmer’s choice. The example below
shows two methods of writing the syntax for a callback command; the second syntax
captures the return variable.

SYNTAX: <callbackCommand>

 <fVariable> = <callbackCommand>

Some callback commands require the return variable, in others the user cannot have a
return variable, and in others it is optional. If the return value of a callback command is
optional and the user does not use the assignment form of the extended command, it
discards the value of the return variable.

Refer to the specific callback command for the meaning of return values. See the
example in Section 6.3.2.4 for an example use of return variables.

6.3.2.4. Parameters to a Callback Command

SYNTAX: <parameterList> is (<fVariable> or <s32Variable> or <axisMask>)1

EXAMPLE: “stuff” $GLOB6 “more stuff” X Y Z (6+$GLOB9)

Syntactically, many callback functions take a parameterList. An arbitrary number of axis
masks, strings, floating point variables, or constants may be in the parameterList in any
order, separated by whitespace. There is no limit to the number of objects in the
parameterList, instead there is a limit to the total size of the parameterList. The user is
allowed 320 bytes of data, where string constants and variables occupy 34 bytes apiece;
axis masks, floating point constants, and strings occupy 12 bytes apiece. Host PC
functions have many special considerations, foremost is what process must be running on
the PC, in order to respond to the callback. The UNIDEX 600 MMI is primarily used for
this purpose.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-5

6.4. RS-447 Extended Commands

RS-447 extended commands may optionally be enclosed within parentheses "()". This
provides compatibility with the RS-447 standard as well as previous command sets used
by Aerotech’s OS/2 based applications. Table 6-3 summarizes and references the
extended commands within this chapter.

Table 6-3. Extended Command Summary

Extended Command Page Category Description

+ - AND EQ > = != <= Ch. 3 Operators Mathematical Operators

: 6-44 Controller Line label (see the GOTO/JUMP command)

ABS Ch. 3 Function Absolute value of a number

ACOS Ch. 3 Function Inverse cosine

AFCO 6-9 Controller Auto Focus, move an axis based upon an analog input

$AI Ch. 3 Controller Read the value of the specified analog input

ALIGN 6-10 Controller Align a slave axis to its master axis

ASIN Ch. 3 Function Inverse sine

ATAN Ch. 3 Function Inverse tangent

#AXISNAMES Ch. 4 Compiler Redefine the standard axisnames

$BI Ch. 3 Controller Read the state of a binary input

BIND 6-12 Controller Allocate axis to task

$BO Ch. 3 Controller Set the state of a binary output

CALL 6-13 Controller Call a subroutine in same program, and return upon completion

CALLDLL 6-14 Controller Allows a function to be called from within a dynamic link library

CAPTURE 6-14 Compiler Gain ownership of an axis bound to another task

CFGMASTER 6-15 Controller Configure a slave axis to track a master axis

CHANGECONFIG 6-15 Callback Configure or Re-Configure an axis from within a CNC program

COMMINIT 6-17 Callback Configure PC’s serial port parameters

COMMSETTIMEOUT 6-18 Callback Define PC’s serial port read time out

CLS 6-13 Controller Call a subroutine in same program, and return upon completion

COS Ch. 3 Function Trigonometric cosine

DATASTART 6-19 Callback Data acquisition start

DATASTOP 6-25 Callback Data acquisition stop

DBLTOSTR 6-125 Controller Convert a (double precision) number to a string

#DEFINE Ch. 4 Compiler Define a string (or lines) to be substituted for a string

.DEFINED Ch. 3 Function Call argument existence testing

DFS 6-25 Controller Define subroutine

Extended Commands U600 CNC Programming Manual

6-6 Aerotech, Inc. Version 1.1

Table 6-3. Extended Command Summary Cont’d.

Extended Command Page Category Description

DISABLE 6-26 Controller Disable an axis drive

DISPLAY 6-27 Callback Display message within the custom display window

DVAR 6-27 Controller Define program variable or array

ENABLE 6-29 Controller Enable an axis drive

ENDM 6-30 Controller Ends the motion on a single axis

EXE 6-30 Callback Execute a DOS, Win NT/95 program and return completion code

EXECCANNEDFUNCTION 6-32 Controller Execute a canned function

EXEMODAL 6-32 Callback Execute a DOS, WINDOWS NT/95 program, wait for completion
and then return completion code

EXP Ch. 3 Function Raise e to a power

FARCALL 6-33 Controller Call a subroutine in another program, and return upon completion

FARGOTO 6-34 Controller Jump to another program

FARJUMP 6-34 Controller See the FARGOTO command

FEDM 6-35 Controller Async. infeed an axis

FILECLOSE 6-36 Callback Closes the specified user data file

FILEEXISTS 6-36 Callback Test for existence of a file

FILEOPEN 6-36 Callback Opens the specified user data file for writing

FILEREAD 6-37 Callback Read data from a file

FILEREADINI 6-39 Callback Read .ini file

FILEWRITE 6-40 Callback Writes the information into the specified data file

FILEWRITEINI 6-42 Callback Write a single parameter or complete parameter .ini file to disk

FRAC Ch. 3 Function Fractional part of a number

FREE 6-43 Controller De-allocates an axis from a task

FREECAMTABLE 6-43 Controller Free memory allocated to a cam table

GOTO 6-44 Controller Jump, or go, to the specified entry point

HAND 6-45 Controller Allows positioning of an axis with a handwheel

HANDWHEEL 6-45 Controller See the HAND command

HOME 6-46 Controller Synchronously home an axis to its absolute reference point

HOMEASYNC 6-47 Controller Asynchronously home an axis to its absolute reference point

IF-THEN-ELSE-ENDIF 6-47 Controller Conditional execution operator

#INCLUDE Ch. 4 Compiler Include a file within another

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-7

Table 6-3. Extended Command Summary Cont’d.

Extended Command Page Category Description

INDEX 6-50 Controller Starts relative move while continuing with next program line

INT Ch. 3 Function Integer portion of a number

ISAVAIL 6-50 Function Is the specified axis available for use by the current task

JUMP 6-44 Controller See the GOTO command

LOADCAMTABLE 6-62 Callback Load a cam table and configure the master and slave axes

#MAKENCODESLABELS 6-63 Compiler Convert N codes to program labels, for M97 and M98 M codes

MAP 6-64 Controller Assign a physical axis to a task with a given axis name

MASKTODOUBLE 6-64 Function Convert a task axis mask to an integer value

MOVETO 6-65 Controller Moves a specified axis to a specific position at a specified speed

MSET 6-66 Controller Output the specified vector to a brushless motor

MSGBOX 6-67 Callback Display a user message in a pop-up box

MSGCLEAR 6-70 Callback Clear the messages from the user display list

MSGDISPLAY 6-71 Callback Display a user message in the user display list

MSGHIDE 6-72 Callback Hide the user message display list

MSGINPUT 6-72 Callback Input data from the user via a pop-up box

MSGLAMP 6-74 Callback Display status or warning info. in the message lamps

MSGMENU 6-75 Callback Display a user option menu

MSGSHOW 6-76 Callback Show the user message display list

MSGTASK 6-76 Callback Clear Task fault messages from the MMI task fault display area

ON 6-77 Controller Monitor and act upon a condition

ONGOSUB 6-79 Controller Conditional branch on error conditions

OSC 6-88 Controller Causes a specified axis to oscillate (cycle) a specified distance
and speed

#PARMNAMES Compiler Redefine the call stack parameter names

POPMODES 6-89 Controller Restore the modal G Code states

PROBE 6-90 Controller Initialize touch probe

PROGRAMDOWNLOADFILE 6-91 Callback Download a CNC program to the controller

PROGRAMEXECUTE 6-92 Callback Execute a CNC program on a specified task on the controller

PROGRAMEXECUTEFILE 6-92 Callback Execute a CNC program from a file on a specified task on the
controller

PROGRAMTASKRESET 6-93 Callback Change the execution mode of a CNC program on another task

PROGRAMUNLOAD 6-94 Callback Unload a CNC program from the controllers memory

PSOD 6-97 PSO Card Firing distance entry

PSOF 6-100 PSO Card Specify tracking axes and/or begin tracking

Extended Commands U600 CNC Programming Manual

6-8 Aerotech, Inc. Version 1.1

Table 6-3. Extended Command Summary Cont’d.

Extended Command Page Category Description

PSOP 6-102 PSO Card Laser pulse output definition

PSOS 6-105 PSO Card Scaling of axes

PSOT 6-106 PSO Card Digital and analog output control

PGM 6-33 Controller See FARCALL

PRG 6-33 Controller See FARCALL

PUSHMODES 6-89 Controller Save the modal G Code states

REF 6-46 Controller See HOME

RELEASE 6-112 Compiler Release ownership of an axis to its bound task

RPT/ ENDRPT 6-112 Controller Repeat blocks specified number of times, then end

RETURN 6-117 Controller Return from subroutine

$RI Ch. 3 Controller Read the state of a register input

$RO Ch. 3 Controller Set the state of a register output

SETCANNEDFUNCTION 6-113 Controller Define a canned function

SETPARM 6-119 Controller Set a parameter within a CNC program

SIN Ch. 3 Function Trigonometric sine

SLEW 6-119 Controller Allows the user to position the axis manually with a
mouse/trackball or joystick

STRCHAR 6-123 Controller Look for a set of characters within another string

STRCMP 6-122 Controller Compare the length of two strings

STRFIND 6-122 Controller Look for a string within another string

STRLEN 6-121 Controller Find the length of a string

STRLWR 6-124 Controller Convert a string to lower case characters

STRM 6-120 Controller Begins motion on a single axis without stopping at any given
target position

STRMID 6-125 Controller Remove a string from a larger string

STRTOASCII 6-124 Controller Find the ASCII value of a character

STRTODBL 6-123 Controller Convert a string to a (double precision) number

STRUPR 6-124 Controller Convert a string to upper case characters

SQRT Ch. 3 Function Square root

SYNC 6-126 Controller Synchronizes a slave to a master axis

SUB 6-25 Controller See the DFS command

TAN Ch. 3 Function Trigonometric tangent

TRACK 6-128 Controller Establish master/slave relationship

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-9

Table 6-3. Extended Command Summary Cont’d.

Extended Command Page Category Description

VOLCOMP 6-131 Callback Calculate the compensation factor for the velocity of light

WAIT 6-132 Controller Will hold position until a specified condition is met

WHILE / ENDWHILE 6-132 Controller Execute blocks while condition is true

6.4.1. Auto Focus - AFCO

SYNTAX:AFCO , AXIS, ADC_CHANNEL, SPEED, DEADBAND,

ANALOG_SETPOINT, ANTIDIVE

EXAMPLE:AFCO Z, 0, 60, .1, 0, 5

Where:

AXIS : axis to track the analog input

ADC_CHANNEL : analog input channel (0 to 7)

SPEED : Speed of AXIS when the difference between the current
analog input and ANALOG_SETPOINT is 10 volts
(IN/MIN or MM/MIN). ANALOG_SETPOINT is 10 volts

DEADBAND : Minimum deviation from ANALOG_SETPOINT for
motion to occur

ANALOG_SETPOINT : Desired analog target value, range +/- 10 volts

ANTIDIVE : Value of the analog input beyond which no motion will
occur, range +/- 10 volts

This command is typically used to maintain a constant height above the part surface using
a position transducer, which returns an analog voltage proportional to distance. A desired
height above the surface is specified by the ANALOG_SETPOINT variable. The speed at
which the axis will respond to a changing analog input is defined in the following pseudo
code:

Extended Commands U600 CNC Programming Manual

6-10 Aerotech, Inc. Version 1.1

DIFFERENCE = CURRENT_ANALOG_INPUT - ANALOG_SETPOINT
IF ABS(DIFFERENCE) > DEADBAND THEN

IF ANTIDIVE < 0 THEN
 IF CURRENT_ANALOG_INPUT > ANTI_DIVE THEN
 OUTPUT_SPEED = SPEED * DIFFERENCE/10
 ELSE
 OUTPUT_SPEED = 0
 ENDIF
 ELSE
 IF CURRENT_ANALOG_INPUT < ANTI_DIVE THEN
 OUTPUT_SPEED = SPEED * DIFFERENCE/10
 ELSE
 OUTPUT_SPEED = 0
 ENDIF
 ENDIF
ELSE

OUTPUT_SPEED = 0
ENDIF
OUTPUT_SPEED_COUNTS = OUTPUT_SPEED * CNTSPERINCH

The ANTIDIVE parameter is used to specify a maximum analog value above which, no
motion will occur. This parameter will prevent the axis from “diving” if the auto-focus
head passes over a hole, or moves off of the edge of the material whose thickness it is
sensing. This implies that the auto-focus head will have to initially be positioned to an
analog input value, which does not exceed the value specified by ANTIDIVE, otherwise
no motion will occur. Note that the direction the axis will move, is equivalent to the sign
of the difference between the current analog input and the set-point value and the sign of
the CntsPerInch machine parameter. To reverse the direction of movement, specify a
negative speed command or invert the sign of the CntsPerInch machine parameter. Also,
the ANTIDIVE parameter is unidirectional, as indicated by its sign. In other words, an
ANTIDIVE parameter of 2 implies no motion when the analog input is greater than 2
volts, but there will be motion if the analog input is more negative than 2 volts.

The auto-focus command may be disabled by specifying the auto focus axis in the ENDM
command.

6.4.2. ALIGN Command

SYNTAX: ALIGN AXIS, MASTER_TARGET, SPEED

AXIS specifies the axis to move into alignment relative to its master axis.

MASTER_POSITION specifies the master axis position to align to.

SPEED is the speed at which the alignment move is to occur at.

The master target is an absolute position, and is specified in user units. The speed is
specified in user units/minute.

This command will generate a move that will be added to the current synchronized
motion enabled via a previous TRACK command. For this command to function correctly
the following items must be observed:

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-11

Both the master and slave axis must have their CntsPerInch machine parameter set
correctly. These parameters are used to convert units (IN/MM) in the master coordinates
into machine counts on the slave axis.

The current master position is referenced relative to the zero position of the slave axis.
Note, that the zero (home) position of the slave axis can be changed through the
HOMEOFFSET parameter or by setting the axis POS parameter directly.

The distance the axis will travel to align with the specified master position is defined by:

CURRENT_MASTR_POS - MASTR_TARGET - CURRENT_SLAVE_POS

Monitoring the POSTOGO axis parameter allows the completion of the move to be
tested. When the POSTOGO axis parameter reaches zero, the ALIGN move is complete.

Refer to Figure 6-1 for clarification on how the ALIGN command functions.

Figure 6-1. Align Command Function Illustration

Extended Commands U600 CNC Programming Manual

6-12 Aerotech, Inc. Version 1.1

In Figure 6-1, the current belt position is 1000mm, the gantry is displaced 25mm from its
home position and the position to align to (the current part position on the belt) is 900mm.
Note that this illustration represents the relative positions of all the elements when the
ALIGN command is executed. In actuality, the gantry is tracking the belt as it moves
from left to right. The execution of ALIGN GANTRY 900 1000 for the illustration
above will cause a move of 75mm (MASTER_POS – GANTRY_POS – ALIGN_POS)
at 1000 mm/min to be added to the tracking motion of the belt. When the move
completes, the gantry will be located above the part on the belt.

6.4.3. BIND Axis Command

SYNTAX: BIND <axisMask>

EXAMPLE: BIND X Y Z

This command should not normally be used. Axes should be bound to a task within
the axis configuration wizard and captured by another task and then released by that
task for the original (or other) task to command motion on.

Since there are four independent tasks running in parallel, there must be some way of
arbitrating situations where more than one task tries to move the same axis. The BIND
command serves this purpose. Once an axis is bound to a task, no other task can move
that axis, however, you can modify most parameters of an axis without having ownership
of that axis. If a task tries to move an axis bound to another task, the “physical axis is
controlled” fault appears (on the task attempting to move the axis). The BIND command
is not typically necessary, if you are operating from the U600MMI-NT/95, which
automatically binds axes within the “task-axis” group box of the second page of the Axis
Configuration Wizard.

A BIND command automatically clears all fixture offsets on the axes being bound.

If a task tries to move an axis without binding it, then the “axis is not bound” fault occurs.

If a task is moving an axis and another task tries to bind that axis, then the “physical axis
is controlled” fault appears.

The FREE command unbinds an axis from a task. If the user frees an axis that is not
bound, the controller ignores the command.

EXAMPLE PROGRAM:

BIND X Y
G1 X50 Y50 F100
FREE X Y

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-13

6.4.4. Call Subroutine Command CALL / CLS

SYNTAX: CALL <label> [[callArgument>]]

EXAMPLE: CALL MYROUTINE X78 Y$GLOB8

The CALL command, along with the DFS and ENDDFS commands execute subroutines
within a program. Please refer to the DFS command for details on subroutines and their
behavior.

Please refer to Call Arguments (Section 3.11.7.) and Call Argument Existence Testing
(Section 3.11.7.1.) for details on program/subroutine call arguments (sometimes called
parameters). The number of nested subroutines is limited by the MaxCallStack task
parameter.

When exiting the subroutine the modal settings are not restored. For example, if G90
is active before the subroutine call, and the subroutine executes G91, then just after
returning from the subroutine, G91 will still be active!

EXAMPLE PROGRAM:

DVAR $theCubedValue

$GLOB0 = 1

REPEAT 10 ; For values 1 to 10

 CALL doCube ; Performs the cube

 $GLOB0[$GLOB0] = $theCubedValue ; Stores it in global vars 1 to 10

 $GLOB0 = $GLOB0 + 1 ; Go on to the next one

ENDRPT

M2 ; End of program

;;; NOTE without the M02 above, the

;;; doCube subroutine would be executed one more time.

DFS doCube

 $theCubedValue = $GLOB0**3

ENDDFS

$GLOBAL0 = $GLOBAL0 * $a

 ELSE IF ($p.DEFINED == 1) THEN

 $GLOBAL0 = $GLOBAL0 * $p

 ENDIF

ENDDFS

Extended Commands U600 CNC Programming Manual

6-14 Aerotech, Inc. Version 1.1

6.4.5. CallDLL Command

SYNTAX: CALLDLL “UserDLL”, “UserFunction” [,arbitrary data]

EXAMPLE: CALLDLL “AerCBack.dll”, “AerCBackFileWrite”, $hFile,
“;comment/data”

This CNC statement allows a function to be called from within a dynamic link library
(.DLL). The User.DLL and the UserFunction may be specified. The specified .DLL must
be found within the system environment PATH variable or an absolute path must be
specified. For detailed information on writing a .DLL that may be called by this
command, see TN0004 in the online help file.

EXAMPLE PROGRAM:

DVAR $hFile

CALLDLL “AerCBack.dll”, “AerCBackExe”, “CMD.Exe /C AerDebug.Exe”
CALLDLL “AerCBack.dll”, “AerCBackExe”, “Notepad.Exe”
CALLDLL “AerCBack.dll”, “AerCBackExe”, “Notepad.Exe”
e:\u600\programs\test.pgm”, 2

$hFile = CALLDLL “AerCBack.dll”, “AerCBackFileOpen”,
“e:\u600\programs\test.pgm”, 2

DISPLAY 0, $hFile

IF $hFile != 0 THEN

CALLDLL “AerCBack.dll”, “AerCBackFileWrite”, $hFile, “;Useless
comment”

CALLDLL “AerCBack.dll”, “AerCBackFileClose”, $hFile
ENDIF

6.4.6. Capture Axis

SYNTAX:CAPTURE <axisMask >

EXAMPLE:CAPTURE X Y

This command allows a task to borrow ownership of an axis from another task that owns
the axis (another task that has performed a BIND command on the axis). Suppose, for
example that task 1 has bound an axis. Then as long as that axes is not moving at the time
when another task issues a CAPTURE command on that axis, that task takes ownership of
the axis, and can command motion on that axis as if it owned it. Once an axis is
CAPTURED, the task that originally bound it (task 1 in the above example) cannot
command motion on the axes until the other task releases it.

While an axis is captured, it behaves in every way as if it were bound to that task.

A CAPTURE command automatically clears all fixture offsets on the axes being bound.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-15

6.4.7. CFGMASTER Command (Configure Master Axis)

SYNTAX: CFGMASTER <SlaveAxis>, <Type>, <MasterAxis>

Where:

<SlaveAxis> is the axis whose master axis is being configured.

<Type> = 0, Slave off of the master axe’s commanded position.

 = 1, Slave off the masters actual position.

<MasterAxis> is the master axis.

This command configures a slave axis to track a master axis for camming motion. It is
required prior to using the TRACK or GEARING commands. It is not required prior to
the HANDWHEEL or LOADCAMTABLE command, which automatically configures the
master axis. This command assumes that the master axis has already been configured for
the appropriate type of feedback via the axis configuration wizard.

Gearing Example Program
; The following program will configure the X axis to follow the Y axis at
; 2 times its commanded speed.
;
CFGMASTER X 0 Y ; X is slave, Y is master
GEARSLAVE.X = 2
GEARMASTER.X = 1
GEARMODE.X = 1
G0 Y100000 ; Starts master moving

; slave axis follows at 2 times its speed

6.4.8. Change Axis Configuration from within a CNC Program

SYNTAX: CHANGECONFIG <axis>, <Cfg_number>, <IniFileName>

EXAMPLE: CHANGECONFIG 3, 1, ENCODER_CFG_FILE

<axis> is the axis index of the axis to reconfigure.

<Cfg_number> is the configuration number to read from the ini file.

<IniFileName> is the name of the ini file to read the configuration from.

This command allows you to change the configuration of an axis from within a CNC
program. The DRIVE will be disabled by this command before the axis is configured.
The specified Ini file must be of the format used by the AxisCfg.Ini file, as shown below.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

Sample configuration file:

Extended Commands U600 CNC Programming Manual

6-16 Aerotech, Inc. Version 1.1

[AxisConfig.1]
FBType=EncoderHall
FBType.EncoderHall.Channel=4
FBType.EncoderHall.Lines=100000
FBType.EncoderHall.HallLines=2000
FBType.EncoderHall.CommOffset=0
FBType.EncoderHall.CommChannel=3
FBType.EncoderHall.Bounded=1
IOType=D2A
IOType.D2A.Channel=3
Sp1Type=Encoder
Sp1Type.Encoder.Type=3
Sp1Type.Encoder.Channel=3
Sp1Type.Encoder.Lines=160000
Sp1Type.Encoder.VelHomeFlag=0
Sp2Type=Null
Name=X
Task=0
TaskAxis=2

[AxisConfig.2]
FBType=EncoderHall
FBType.EncoderHall.Channel=5
FBType.EncoderHall.Lines=100000
FBType.EncoderHall.HallLines=2000
FBType.EncoderHall.CommOffset=0
FBType.EncoderHall.CommChannel=3
FBType.EncoderHall.Bounded=1
IOType=D2A
IOType.D2A.Channel=3
Sp1Type=Encoder
Sp1Type.Encoder.Type=3
Sp1Type.Encoder.Channel=3
Sp1Type.Encoder.Lines=160000
Sp1Type.Encoder.VelHomeFlag=0
Sp2Type=Null
Name=X
Task=0
TaskAxis=2

[AxisConfig.3]
FBType=EncoderHall
FBType.EncoderHall.Channel=3
FBType.EncoderHall.Lines=100000
FBType.EncoderHall.HallLines=2000
FBType.EncoderHall.CommOffset=0
FBType.EncoderHall.CommChannel=3
FBType.EncoderHall.Bounded=1
IOType=D2A
IOType.D2A.Channel=3
Sp1Type=Null
Sp2Type=Null
Name=X
Task=0
TaskAxis=2

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-17

6.4.9. COMMINIT

SYNTAX: COMMINIT $FileHandle, modeString

EXAMPLE: COMMINIT $FileHandle, "baud=9600 parity=N data=8 stop=1"

$FileHandle is a valid comport handle returned by the FILEOPEN command.

modeString is used to define the configuration of the serial port. It may contain a
format specifier.

The modeString parameter has the same format as the command-line arguments for the
operating systems MODE command. For example, the following string specifies a baud
rate of 9600, no parity, 8 data bits, and 1 stop bit:

“baud=9600 parity=N data=8 stop=1”

For further information on the mode command syntax, refer to your operating system
documentation.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

EXAMPLE PROGRAM:

DVAR $hFile
DVAR $var1
DVAR $var2

; get a communications handle to COM2
$hFile = FILEOPEN "COM2", 2

; Initialize comport
COMMINIT $hFile, "baud=9600 parity=N data=8 stop=1"

; Define 1 second timeout for data at serial port
COMMSETTIMEOUT $hFile, -1, -1, 1000

FILEWRITE $hFile, "Hello !"
FILEWRITE $hFile, "How are you ?"

FILEREAD $hFile 0 $var1, $var2
MSGDISPLAY 1, $var1, " ", $var2

FILECLOSE $hFile

Extended Commands U600 CNC Programming Manual

6-18 Aerotech, Inc. Version 1.1

6.4.10. COMMSETTIMEOUT

SYNTAX: COMMSETTIMEOUT $FileHandle, readIntervalTimeOut,

readTotalTimeoutMultiplier, readTotalTimeoutConstant

EXAMPLE: COMMSETTIMEOUT $FileHandle, -1, -1, 1000

See the COMMINIT command for a complete example program.

All Callback commands will set the ErrCode task parameter, if an error occurs
during execution.

The COMMSETTIMEOUT function defines the time-out parameter for all read
operations on a specified communications port.

$FileHandle is a variable containing a valid comport handle returned by the FILEOPEN
command.

ReadIntervalTimeOut – Specifies the maximum time, in milliseconds, allowed to elapse
between the arrival of two characters on the communications line. During a FILEREAD
operation, the time period begins when the first character is received. If the interval
between the arrival of any two characters exceeds this amount, the FILEREAD operation
is completed and any buffered data is returned. A value of zero indicates that interval
time-outs are not used.

A value of -1, combined with zero values for both the ReadTotalTimeoutConstant and
ReadTotalTimeoutMultiplier parameters, specifies that the read operation is to return
immediately with the characters that have already been received, even if no characters
have been received.

ReadTotalTimeoutMultiplier – Specifies the multiplier, in milliseconds, used to calculate
the total time-out period for read operations. For each read operation, this value is
multiplied by the requested number of bytes to be read.

ReadTotalTimeoutConstant – Specifies the constant, in milliseconds, used to calculate the
total time-out period for read operations. For each read operation, this value is added to
the product of the ReadTotalTimeoutMultiplier member and the requested number of
bytes.

A value of 0 for both the ReadTotalTimeoutMultiplier and ReadTotalTimeoutConstant
members indicates that total time-outs are not used for read operations.

The most common combinations of timeouts are as follows:

; If the data is waiting at the serial port, then immediately read the data and return.

COMMSETTIMEOUT $hFile, -1, 0, 0

; If the data is not already at the serial port, then each read will wait up to 1 sec (1000
msec) for data

COMMSETTIMEOUT $hFile, -1, -1, 1000

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-19

6.4.11. Data Acquisition Start DATASTART

SYNTAX: DATASTART handle nsamps rate [[<axisMask>]] [[datamask]] [[mode]] [[waitTime]]

Where:
handle is a <iExpression> the handle of a file to write to
nsamps is a <fExpression> the number of samples to collect
rate is a <fExpression> the rate at which to collect data
axismask is a <iExpression> that specifies that axis to collect the data for
datamask is a <iExpression> what data to write to the file (default=3)
mode is a <iExpression> how to acquire data (default=0)
waitTime is a <iExpression> how long to wait between samples (default=100 milliseconds)

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

General Overview
The UNIDEX 600 Series controller is equipped with a data acquisition feature used to
capture real-time information relevant to motion, and I/O. The data is collected and stored
on the controller; and at appropriate intervals of time, blocks of data are uploaded from
the controller to the PC, and written to the specified file on the PC. This data may be read
from the file and displayed using the AerPlot utility.

Some of the data collected is related to particular axes (i.e., position), while other data is
related to the system as a whole (i.e., clock). Table 6-4 specifies what data can be
collected. The datamask parameter allows the user to specify the items to collect. For
items that are axis related, that data will be collected for all axes specified in the axisMask
parameter.

The user must use the DATASTOP command to terminate the data acquisition. The
FILEOPEN and FILECLOSE commands must be used in conjunction with the
DATASTART and DATASTOP commands to open and close a file to write the acquired
data. Data may be acquired into a single data file from multiple acquisitions by either
starting another acquisition with the DATASTART command before closing the file, or
by re-opening an existing data file with the FILEOPEN command in mode 2, for
appending to the end of the existing data file.

Timing Performance
Data collection has no detrimental effect on the speed of the update rate of the servo loop
(does not effect the motion). However, it does interfere with any controller responses to
other requests, and may significantly slow down the MMI600 or other library calling
applications. It takes up memory on the controller card; 24*nsamps bytes for each axis
requested and 24*nsamps for the system data. Data is collected as part of the servo loop
interrupt, which is either 4 or 1 kilo-hertz, limiting the worst case accuracy to +/- 1 servo
loop interrupt (+/- .25 msec or +/- 1 msec.).

Obviously, the longer the waitTime between samples, the less time taken up on the
controller at collection. Similarly, smaller numbers of points take up less space on the
controller.

Extended Commands U600 CNC Programming Manual

6-20 Aerotech, Inc. Version 1.1

All possible data is always collected on the controller and delivered to the PC. So there is
no saving of controller time or space by specifying smaller amounts of data. However, in
the infinite collection modes, be careful requesting more data than needed. If the user
requests too much data (too large a datamask parameter), or makes the nsamps parameter
too small, the controller may overwrite the data before it is uploaded to the PC. There is
no warning generated for this. If this happens, the data acquisition will continue, but an
error code will be returned in the ErrCode task parameter when the DATASTOP
statement is executed. Either, lower the amount of requested data; kill the other process
on the PC, or request a larger queue size.

If the controller collects data too fast, it will overwrite the circular queue before the Data
Collection thread can retrieve the samples and write them into the file. The controller
detects this “overwrite” condition, but will continue to collect data. If an overwrite
condition occurs during data collection, then the DATASTOP command generates the
task fault: “Data Collection Overflow. When an overflow does occur, data will be lost.
Each data line that is returned will be consistent (each line is correct by itself), however
blocks of lines will be missing. To correct for overflow conditions, either lower the rate of
collection, kill the other process’s on the PC, or otherwise speed up the PC. Requesting a
larger queue size will, in some cases help, as it will delay the onset of the overflow
condition. You can also use the waitTime parameter, to try to speed up the PC polling.
However, the waitTime only indicates the frequency of generation of WM_TIMER
messages posted to the PC thread, and the actual collections will occur only as fast as the
PC processor can dispose of other tasks of the same priority.

Errors
Like all callback commands, the DATASTART command may return errors in the
ErrCode task parameter. Overflow problems (see the paragraph below) are only reported
when the DATASTOP command is executed. The programmer should test the ErrCode
task parameter after each DATASTART and DATASTOP command to insure that it is
zero.

In the queued modes; if the PC data collection thread created by the DATASTART
command can not keep up with the controller, the controller will overwrite data items that
have not been uploaded to the PC. The result is; data points will be periodically missing
from the file. In order to ensure that the PC can keep up, the user must make the queue
buffer, nsamps, large enough to insure that the PC uploads all the points before they are
overwritten. This does not apply to non-queued collection modes.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-21

Parameters

Data Acquisition handle Parameter

The first parameter (handle) to the DATASTART command must be a variable
containing the file handle to write the ASCII (text based) data to. A previous FILEOPEN
command provides this file handle.

Data Acquisition nsamps Parameter

The second parameter is the number of samples (nsamps). The interpretation of this
parameter is dependent upon the mode parameter (see below).

Data Acquisition rate Parameter

The third parameter is the acquisition rate (rate). The interpretation of this parameter is
dependent upon the mode parameter (see below).

Data Acquisition axismask Parameter and datamask Parameter

The fourth and fifth parameters are optional and specify what data to collect. The fourth
parameter, “<axisMask>”, is an optional list of axes to collect their data. If this is not
supplied, then it only collects system data items, regardless of whether the datamask
specifies axis data items.

The fifth parameter, “datamask”, is a 32-bit integer mask. Each bit specifies a data item
in Table 6-4 available for collection. Any axis data items specified in the datamask will
always be collected for all the axes specified in the axisMask. If the datamask is not
supplied, it defaults to 3 (CLOCK and POSITION only).

DATA_CLOCK
DATA_POSITION
DATA_POSITION_CMD
DATA_POSITION_RAW
DATA_POSITION_MASTER
DATA_VELOCITY
DATA_VELOCITY_CMD
DATA_ACCELERATION
DATA_TORQUE
DATA_IN
DATA_OUT
DATA_ANL1
DATA_ANL2
DATA_ANL3
DATA_ANL4
DATA_ANL5
DATA_ANL6
DATA_ANL7
DATA_ANL8

Extended Commands U600 CNC Programming Manual

6-22 Aerotech, Inc. Version 1.1

The analog values are floating point, while the rest are integers.

Position is sampled from the primary (position) feedback device, except when in the latch
based collection modes. In which case, the position is latched via the high speed position
latch input. The analog values are floating point (6 digits beyond the decimal point),
while the rest are integers. Velocity is not from the feedback device, rather it is the
derivative of the position feedback, computed every millisecond. Similarly, acceleration
is the derivative of that velocity, also computed every millisecond.

Data Acquisition mode Parameter

The sixth parameter, “mode”, is the optional data acquisition mode. If not provided, it
defaults to zero. It determines the triggering of the data, and the interpretation of the
nsamps and rate parameters.

Mode 0 = Finite size rate-based collection. The rate parameter specifies the interval
between acquisitions in milliseconds. Collects only nsamps samples, then data
acquisition stops. However, the user still needs to do a DATASTOP
afterwards.

Mode 1 = Infinite size rate-based collection. The rate parameter specifies the interval
between acquisitions in milliseconds. Collects data continuously until
performing a DATASTOP. The queue size is set at nsamps samples.

Mode 2 = Finite size latch-based collection. Like mode 0, but collects only when an edge
is detected in the Position Latch Input (see U600 Hardware Manual,
EDU154, Technical Details, under the P10 pinout). The rate parameter is not
used in this mode. The position latch input is checked every millisecond.
Therefore, the maximum possible rate of data collection is one sample per
millisecond. Collects only nsamps samples, then data acquisition stops.
However, the user still needs to do a DATASTOP afterwards.

Mode 3 = Infinite size latch-based collection. Same as Mode 2, but uses a queue like
mode 1. The queue size is set at nsamps samples.

In queue mode, if the PC data collection thread created by the DATASTART
command cannot keep up with the controller, the controller overwrites data items not
yet uploaded by the PC. The result is data points will be periodically “skipped” in the
file. There is no error or warning delivered in this case. In order to ensure that the PC
can keep up, the user must make the queue buffer nsamps large enough so the PC
uploads all the points before they are overwritten. This does not apply to non-queue-
mode collections.

Data Acquisition waitTime Parameter

The optional seventh parameter <waitTime>, is the time between data acquisition
samples. If not provided, it defaults to 100 millisecond.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-23

Table 6-4. Data Available for Collection

Bit Hexadecimal Value Data Type Data type Label Description / Elaboration

0 0x1 Clock Sys 32 bit integer CLOCK Milliseconds

1 0x2 Position Axis 32 bit integer POS Counts

2 0x4 Position Command Axis 32 bit integer POSCMD Counts

3 0x8 Raw Position Axis 32 bit integer POSRAW Counts

4 0x10 Master Position Axis 32 bit integer POSMAS Counts

5 0x20 Velocity Axis 16 bit integer VEL Counts/millisecond

6 0x40 Velocity Command Axis 16 bit integer VELCMD Counts/millisecond

7 0x80 Acceleration Axis 16 bit integer ACC Counts/millisec/millisec

8 0x100 Torque Axis 16 bit integer TORQUE -32768 to 32768

9 0x200 Bit Inputs Sys 16 bit integer BYINP Bit Mask (virtual inputs 0-15)

10 0x400 Bit Outputs Sys 16 bit integer BYOUT Bit Mask (virtual outputs 0-15)

11-18 0x800 - 0x40000 Analog inputs 1
through 8

Sys 32 bit Floating
Point

ANL1 –
ANL8

Volts (-10 to 10) 6 digits past
decimal point are always shown

19-31 0x80000-0x80000000 NOT USED

The analog values are floating point, while the rest are integers.

Format of Output

The file written is always an ASCII text file. Each line is terminated with a carriage return
and linefeed (ASCII codes 13 and 10, respectively). Data values on each line are always
separated by a single space.

Lines beginning with a semicolon “;” as the first character are not data lines; these are
comment lines written to the file in order to identify the file and/or errors in the collection
process. These lines might appear anywhere in the file, not just in the beginning.
However, the first three lines in the file are always comment lines and help identify the
file content.

The first line of the file always provides the maximum width of any line in the file,
followed by (separated with a space) the number of data values per data line. The
maximum width is useful for allocating text for the data lines, since lines can potentially
be over fifteen thousand characters long (16 axes, 8 data items per axis, plus 11 system
data items).

The second line of the file always is a reflection of the DATASTART command that
created it, with all the parameters resolved into constants (except the return variable
assignment, if any, is not shown, and the handle is not shown). Even if the user did not

Extended Commands U600 CNC Programming Manual

6-24 Aerotech, Inc. Version 1.1

supply certain parameters, and allowed them to default, all parameter values are shown in
the first line of the file.

DATASTART nsamps rate datamask <axisMask> mode waitTime

The third line of the file identifies the units of time.

The fourth line of the file is always a title line, identifying the contents of a line of data. It
essentially serves to identify the columns of data in the file, although no effort is made to
line these labels up with the actual data. The line is a series of five character labels, each
label separated by a space (see Table 6-4). The axis related labels are the three characters
of their label, followed by a two digit axis number. For example, the axis 2 position is
labeled POS02, while the clock time is labeled CLOCK.

Normally, the data collection terminates with the DATASTOP command. However, if not
in a queued mode, data collection can terminate due to the controller completing the
requested number of samples. In this case, terminating the file, is the line “; POINTS
COLLECTED”.

EXAMPLE PROGRAM:

; This program is the ExData.Pgm found in the \U600\Programs directory.
;
; This example will produce the file: \U600\PROGRAMS\test.dat which file will look like:
(except for the first preceding semicolons)
;; 80 5
;; DATASTART 500 10 3 35 0 100
;; CLOCK POS01 VEL01 POS02 VEL02
;58586159 0 0 0 0
;58586169 0 0 0 0
;58586179 0 0 0 0
;58586189 0 0 0 0
; ...
;
DVAR $filenum

$filenum = FILEOPEN “\U600\PROGRAMS\test.dat” 0 ; open the file to write to
IF ErrCode NE 1 GOTO fail1 ; Goto fail routine if the command was unsuccessful
DATASTART $filenum 500 10 X Y 35 ; Acquire 500 samples of clock, position, veloc

; data for X, Y axes, one sample every 10 msec
IF ErrCode NE 1 GOTO fail2 ; Goto fail routine if the command was unsuccessful
; <program block>
Any number of program blocks
;...
Typically, these block do motion
; <program block>

DATASTOP ; Stop acquiring data

:fail1

FILECLOSE $filenum ; close the data file
:fail2 ; error handler
M02

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-25

6.4.12. Data Acquisition Stop DATASTOP

SYNTAX: DATASTOP

The DATASTOP command is the opposite of a DATASTART command. See the
DATASTART example. The DATASTOP command can generate the task fault: “Data
Collection Overflow”. See the DATASTART command under “Timing Performance” for
details on this error.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

6.4.13. Define Subroutine

SYNTAX: DFS <label >
<CNCBlock >
...
<CNCBlock >

ENDDFS

The DFS command, along with the ENDDFS and CALL extended commands define and
call subroutines. A subroutine is a group of CNC program blocks. Typically, this group of
blocks perform a particular task multiple times during the execution of a parts program. A
call can be made to the appropriate subroutine (using the CALL extended command), at
each point in the program requiring the performance of this task. The subroutine executes
and upon completion, program flow returns to the point where the subroutine was called.
Call arguments may be passed to subroutines.

The advantage to using a subroutine is, it can decrease the parts program size. Multiple
copies of program blocks that perform the same task can be replaced with one subroutine
call. However, CNC subroutines unlike “C” language subroutines, do not have local
variables. CNC subroutines have the same local program variable values that the calling
program has.

Unless the user is careful, execution may fall into the subroutine without a call. If the
compiler detects this condition, it delivers a warning. See the example below.

When exiting the subroutine the modal settings are not restored. For example, if G90
is active before the subroutine call, and the subroutine executes G91, then just after
returning from the subroutine, G91 will still be active ! The PUSHMODES command
may be used to store the states of the modal G codes.

Extended Commands U600 CNC Programming Manual

6-26 Aerotech, Inc. Version 1.1

Subroutines may call themselves or other subroutines, the MaxCallStack task parameter
limits the number of nested calls that you may have. However, there is no limit to the
MaxCallStack parameter, therefore there is no limit to the number of nested calls that can
be made, except, that imposed by the amount of available memory on the controller.

EXAMPLE PROGRAM:
DVAR $theCubedValue
$GLOB0 = 1
REPEAT 10 ; For values 1 to 10
 CALL doCube ; Performs the cube
 $GLOB0[$GLOB0] = $theCubedValue ; Stores it in global vars 1 to 10
 $GLOB0 = $GLOB0 + 1 ; Go on to the next one
ENDRPT
M2 ; End of program

;;; NOTE without the M02 above, the
;;; doCube subroutine would be executed one more time.

DFS doCube
 $theCubedValue = $GLOB0**3
ENDDFS

6.4.14. DISABLE Axes Command

SYNTAX:DISABLE <AxisMask >

EXAMPLE: DISABLE X Y ; Disable X axis and Y axis drives

This command sets the DRIVE axis parameter to 0, for all the axes in the specified
AxisMask.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-27

6.4.15. Displaying Text in the CDW Window DISPLAY

The DISPLAY command is provided only for backward compatibility with previous
versions of the UNIDEX 600MMI-NT/95. See the MSGxxx commands.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

6.4.16. Define Program Variable or Array DVAR

SYNTAX: DVAR ($<pvName>) 1 ; defines a program variable
DVAR ($<pvName>[<integer>]) 1 ; defines a program array of variables

<pvName>is $<letter><letter>(<letter> or <underscore>)1

The DVAR extended command defines a program variable name for use within a
program. Like all other variables and parameters, a dollar sign must precede a program
variable name. Program variable names must be at least three characters long and the first
two characters must be letters. Program variables are the only CNC keywords where the
difference between upper and lower case is relevant. For example, the variable
“$MYVARIABLE” is a distinctly different program variable than the program variable
“$myvariable.” Also, program variables are the only keywords that allow mixed case (i.e.,
$MyVariable). One or more variables can be defined on the same DVAR line.

All DVAR statements in a given program must appear before any executable command in
the program (non-executable commands include DVAR, and any compiler directive).

Also, the DVAR statement can define program variables or program variable arrays.
Program variable arrays are simply lists of consecutive program variables, accessed by an
index value.

All program variables are automatically initialized to zero upon program initialization.
The maximum number of variables/array elements, is limited only by the amount of
available memory on the controller.

Program variables are only accessible within the current program. Program variables
defined in one program are not accessible by other programs running on the same Task
(see Task variables). Also, program variables are not accessible by programs running
under other Tasks (see Global variables). The UNIDEX 600 Series controller does not
support variables local to subroutines.

Extended Commands U600 CNC Programming Manual

6-28 Aerotech, Inc. Version 1.1

6.4.16.1. Define Program Variable

SYNTAX: DVAR ($<pvName>) 1 ; Defines a program variable

EXAMPLE: DVAR $myVariable, $andherVariable

A variable is a location used by a program to hold a numeric floating point value. The
value of this variable may be modified from within the CNC program and used in
subsequent operations, such as numerical calculations. Another use for variables is
directing program flow (refer to the IF command). The maximum number of variables, is
limited only by the amount of available memory on the controller. Refer to Expressions
for more details on floating point variable syntax.

This command may not be used in the Program Queue Mode.

All DVAR statements in a given program must appear before any executable
command in the program (non-executable commands include DVAR, and any
compiler directive).

6.4.16.2. Define Program Array

SYNTAX: DVAR ($<pvName>[~<integer>~]) 1 ; Defines a program array

EXAMPLE: DVAR $myArray[10]

The DVAR command can also define an array. An array is a group of related variables.
Each element of the array is one program variable.

In the DVAR command the user must specify the number of variables found in the array.
To access individual variables, the user can specify the array name followed by a number
stating the referenced variable.

This command may not be used in the Program Queue Mode.

Zero (0) indexes the first element of an array; the last element is the defined size of the
array minus one. For example, if the user defines the array, “$MyArray” to contain 10
elements, the tenth (and last) element of the array would be accessed as “$MyArray[9]”.
The valid range of an array index is from zero to one less than the array size.

All DVAR statements in a given program must appear before any executable
command in the program (non-executable commands include DVAR, and any
compiler directive).

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-29

EXAMPLE PROGRAM:

DVAR $myArray[3] ; Define an array which
; contains three variables.
; These variables can be accessed as follows:
; myArray[0]
; myArray[1]
; myArray[2]

Also, a variable may hold the value of an array index (i.e., $myArray[$myVar]). The
programmer can continue this kind of nesting indefinitely, as in
$myArray[$anotherArray[$thisArray[$anotherOne[5]]]]. However, it is the programmer’s
responsibility to ensure that every index evaluates to an integer. If an index (a value
within brackets) is not an integer (i.e., $myArray[6.5]), the controller generates a task
fault when it executes that command.

Any variable can be indexed, even variables not declared in a DVAR command and the
index is used as an offset from the actual variable storage location. For example,
$GLOBAL[6] and $GLOBAL1[5] refer to the global variable “$GLOBAL6”.

A test of the index range validity is not performed. If the index is outside the range
defined for that array (as defined in the DVAR command), the syntax specifies other
program variables, based on the order of declaration and this may lead to unexpected
results. See the example below.

EXAMPLE PROGRAM:
DVAR $vara
DVAR $varb[5]
DVAR $varc)
$vara[0] = 1 ; Same as assignment to $vara
$vara[1] = 2 ; Actually assigns to $varb[0]
$varb[5] = 7 ; Actually assigns to $varc
$vara[10]= 11 ; WARNING: non-existent variable - results unexpected !
$varc[1] = 9 ; WARNING: non-existent variable - results unexpected !

6.4.17. ENABLE Command

SYNTAX: ENABLE <AxisMask >

EXAMPLE: ENABLE X Y ; Enable X axis and Y axis drives

This command sets the DRIVE axis parameter to 1, for all the axes in the specified
AxisMask.

Redefining the ENABLE command as a Canned Function allows a subroutine to be called
whenever the drive is enabled. This is useful for initializing brushless motors without hall-
effect feedback sensors present via the MSET command.

WARNING

Extended Commands U600 CNC Programming Manual

6-30 Aerotech, Inc. Version 1.1

6.4.18. End motion (Asynchronous) ENDM

SYNTAX: ENDM <axisLetter>

EXAMPLE: ENDM Y ;End the Y axis motion

The ENDM asynchronous motion command halts motion on a single axis. If there is no
motion, it has no effect. The ENDM command stops motion on the axis regardless of how
the motion was initiated: asynchronous (STRM, INDEX, AFCO, jogging, etc.),
synchronous motion (G0, G1, G2 / G3) or slave motion (LOADCAMTABLE). Except in
the case of slave motion, the ENDM command will decelerate the axis smoothly to a stop
using the same deceleration axis parameters as a G0 command (DECEL, DECELMODE,
and DECELRATE). However, in the case of slave motion, the axes will be stopped
abruptly, therefore it is recommended that slave axes be stopped by an ENDM command
on the master axis instead of the slave axis.

Although it is classified an asynchronous motion command, the ENDM command is
actually synchronous, meaning that the task waits until the axis is “done” before
proceeding to the next CNC program line.

6.4.19. Execute DOS or Windows Program EXE

SYNTAX: EXE <s32Expression> <parameterList>

The <s32Expression> is the filename of the executable

The <parameterList> is the data for the executable

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

This command allows the operator to execute any .EXE file, .COM file, .CMD or .BAT
file as a CNC command. The first parameter, a string, specifies the name of the
executable. The remaining parameters on the line pass to the executable file when the
CNC statement executes. The executable program’s return code sets the ErrCode task
variable, as shown in the following example.

An arbitrary number of string or floating point variables, format specifiers, or constants
may be included as the executable’s parameters. There is no limit to the number of the
executable’s parameters, instead there is a limit to the total size of the parameters. The
user is allowed 320 bytes of data, where string constants and variables occupy 12 bytes
apiece, and floating point constants and strings occupy 34 bytes apiece.

Also, the operator can run .BAT (or .CMD) files, by specifying the executable name as
“COMMAND.COM” for Windows 95 or “CMD.EXE” for Windows NT, and passing the

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-31

.BAT or .CMD file name as a parameter with the “/c” or “/ k” switches. Refer to your
Windows operating system documentation for more details.

When passing parameters you MUST append a space to the end of the
executables name, as shown in the example program.

EXAMPLE PROGRAM:
; Use of EXE without parameters
;

EXE “erase c:\u600*.tmp” ;Erases all .tmp files in the u600 directory on
 ;drive C.

IF ErrCode EQ 1 GOTO fail ;Test return code

EXE “Cleanup.exe “ $MYVAR “/a” ;Runs Cleanup.exe with $MYVAR and /a as
;parameters. For example, if $MYVAR was
;currently 10, the call would be:
;Cleanup.exe 10.00000 /a.

EXE “Cmd.exe /C typeit.bat” ;Runs the batch file typeit.bat, with no
;parameters

M02 ;end of program
:fail ;error handler routine
M02 ;Handle error here or end program

; Use of EXEMODAL with parameters.
;
; NOTE: The space below within the string containing "Copye ", this is
; required, when parameters such as $STRGLOB0 is appended to the string !
;
EXEMODAL "Cleanup.exe " $MYVAR " /a" ; Runs Cleanup.exe with $MYVAR and /a as

; parameters. For example, if $MYVAR was
; currently 10, the call would be:
; Cleanup.exe 10.00000 /a.

EXE “Cmd.exe /C typeit.bat” ; Runs the batch file typeit.bat, with no
; parameters

M02 ; end of program

:fail ; error handler routine
M02 ; Handle error here or end program
end program

The executable file must exist somewhere within the system search path, unless a full
path is specified.

Extended Commands U600 CNC Programming Manual

6-32 Aerotech, Inc. Version 1.1

6.4.20. EXECCANNEDFUNCTION Command

SYNTAX: EXECCANNEDFUNCTION <id>, <task>, [<callArgument >]

The EXECCANNEDFUNCTION command is used to execute a Canned Function. It
allows parameters to be passed to the function (subroutine). CallArguments may be
passed to the Canned Function called as a subroutine.

Where:

<id> - is the number of the canned function.

<task > - is the task number to execute the canned function on (0 - 3).

<callArgument >- allow parameters to be passed to the function.

Alternatively, a canned function not requiring parameters may be called by setting the
CannedFunctionID task parameter, i.e.,

CannedFunctionID[<.Task# >] = id

6.4.21. Execute DOS or Windows Program and Wait for Completion

SYNTAX:EXEMODAL <s32Expression > <parameterList>

The <s32Expression > is the filename of the executable

The <parameterList> is the data for the .exe/.bat program

EXAMPLE: See the example program in 6.4.19.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

This command allows the operator to execute any .EXE file, .COM file, .CMD or .BAT
file as a CNC command. The first parameter, a string, specifies the name of the
executable. The remaining parameters on the line pass to the executable file when the
CNC statement executes. The CNC program waits until the executable program finishes
before continuing to the next step in the CNC program. The executable program’s return
code sets the ErrCode task variable, as shown in the following example.

An arbitrary number of string or floating point variables or constants may be included as
the executable’s parameters. There is no limit to the number of the executable’s
parameters, instead there is a limit to the total size of the parameters. The user is allowed
320 bytes of data, where string constants and variables occupy 12 bytes apiece, and
floating point constants and strings occupy 34 bytes apiece.

Also, the operator can run .BAT (or .CMD) files, by specifying the executable name as
“COMMAND.COM” for Windows 95 or “CMD.EXE” for Windows NT, and passing the
.BAT or .CMD file name as a parameter with the “/c” or “/ k” switches. Refer to your
Windows operating system documentation for more details.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-33

6.4.22. FARCALL FARCALL / PGM / PRG

SYNTAX: FARCALL <filename> [[<label>]] [[callArgument>]]
EXAMPLES: FARCALL “prog2.pgm” “start”

FARCALL “prog2.pgm”
FARCALL “” “starthere”
FARCALL “prog2.pgm” “start” X($GLOBAL0) P5.5

This command calls a subroutine within another CNC program. When the specified
subroutine completes its task, program execution continues with the next program block
in the calling program. After the last statement in the called program executes, or if a
return executes from the called program, program flow returns to the point from where the
subroutine was called. An M2 within a called program will terminate execution and
control will not be returned to the main (calling) CNC program.

Although the subroutine called can be in the same program as it is called from, the CALL
statement is probably more convenient in this case. The FARCALL is intended for the
case where the called subroutine is in a different program.

Programs may call themselves or other programs, there is no limit to the nesting of calls,
except for the limits imposed by available memory and by the MaxCallStack task
parameter

The programmer should note that once a FARCALL is made to another program, the
program variables of the original program are no longer available. Each program has
its own set of program variables, even if a program calls another version of itself.
Call arguments or global variables may be used for passing data to called CNC
program.

When exiting the subroutine the modal settings are not restored. For example, if G90
is active before the subroutine call, and the subroutine executes G91, then just after
returning from the subroutine, G91 will still be active! The PUSHMODES command
may be used to store the states of the modal G codes.

The program variables declared within a particular file will be initialized to zero on
the first FARCALL into any subroutine within that CNC program. On subsequent
calls into the subroutines within that file, the program variables values will be
retained from the last FARCALL. You must re-download the file, if you would like
the value of the variables re-initialized to zero on subsequent FARCALL's.

The filename and label arguments define the point to jump to. If the filename is specified
as “”, then it is assumed that the label is in the same program that the FARCALL is in.

Extended Commands U600 CNC Programming Manual

6-34 Aerotech, Inc. Version 1.1

The label is optional, if it is omitted, then execution will begin at the first line in the
specified program.

CallArguments may be passed to the CNC program called as a subroutine.

EXAMPLE PROGRAM:
;Main.Pgm
FARCALL “PROG2.PGM” “entry3” X1
; This example uses a string variable as the name of a program
;
$STRGLOB1 = “prog2” “.pgm”
FARCALL $STRGLOB1 “entry3”

;Prog2.Pgm
$GLOB0 = $X ; This line is not executed
:entry3
$GLOB0 = $X ; This line is executed

6.4.23. Jump to program FARGOTO / FARJUMP

SYNTAX: FARGOTO <filename> <label >

Where:

<filename> is the CNC program

�<label > ; The user may equivalently use: <label>:

EXAMPLE:FARGOTO “Prog1.Pgm”

The FARGOTO command, along with the colon symbol, jumps or transfers execution to
another location in another program. Instead of proceeding with the next sequential
program block, execution immediately proceeds to the command immediately following
the label command with the colon in the named program. The colon can appear before or
after the label name.

Once the user jumps to another program, they will not return to the originating program,
unless another FARJUMP referencing the original program executes. In most cases the
programmer should use the FARCALL statement instead, it returns to the original
program once the called program completes. The exception is, if an ONGOSUB
command defined in the original program occurs, causing a jump back to the original
program.

Also, the user can use the FARGOTO to transfer control to a label within the same
program, but we recommend the GOTO statement for this.

Once the programmer FARJUMPs to another program, the program variables of the
original program are no longer available.

There is no limit to the number of FARGOTOs that may reference the same label, but a
label can only be defined (using the colon) once in a program. We strongly recommend
that the user not jump into block structures, since this can make code very confusing. For

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-35

example, if a FARGOTO statement jumps into a DFS defined subroutine, then execution
will not return (as in a normal DFS call) back to the point of the GOTO at the ENDDFS
command. The ENDDFS command will simply be ignored and execution falls through to
the statement immediately following the ENDDFS.

FARGOTO has a special role as a return from an ONGOSUB command. Refer to the
ONGOSUB command for details.

6.4.24. FEDM Command

SYNTAX: FEDM <axisLetter> <distance><speed>

Where:

<axisLetter > is the axis to feed in on (the slave)

<distance> is the amount to feed in, relative to the current position in user units

<speed > is in user units per minute or RPM for a rotary axis.

This statement executes motion on a single slave axis, stopping after the specified
increment. The motion is asynchronous to the CNC program execution, meaning motion
begins and then the next CNC statement begins execution. The FEDM command exhibits
asynchronous accel/decel like a G0 command. This command is intended to be used
during electronic camming (it is applied to the motion in addition to a master/slave
driving the given axis).

EXAMPLE:

FEDM Y 4.5 6.7 ;Infeed the slave to 4.5 inches, at 6.7 inches per second

6.4.25. File and Serial Port Command Overview

The following commands are available for accessing files and/or the PC’s serial ports:
FILECLOSE Closes the file or serial port that the user opened.
FILEEXISTS Test existence of a file.
FILEOPEN Open a file or serial port.
FILEREAD Read data from a file or serial port.
FILEREADINI Read data from a formatted .Ini file.
FILEWRITE Write data to a file or serial port.
FILEWRITEINI Read data from a formatted .Ini file
COMMSETTIMEOUT Define the time-out on the serial port.
COMMINIT Initialize the communications parameters on the specified serial port.

All of these (Callback) commands will set the ErrCode task parameter, if an error
occurs during execution.

EXAMPLES: See File Example Program 1 on page 6-41, or File Example Program 2
on page 6-42, or see the COMMINIT command for a serial port example program.

Extended Commands U600 CNC Programming Manual

6-36 Aerotech, Inc. Version 1.1

6.4.25.1. File Close Command FILECLOSE

SYNTAX: FILECLOSE <fVariable>

The <fVariable> parameter is the file handle returned by FILEOPEN.

EXAMPLE: See COMMINIT for a serial port example program.

See the FILEWRITE command for a file example program.

The FILECLOSE command closes the file or serial port that the user opened. The
<fVariable > parameter is the fileHandle assigned to the file or serial port that the user
would like to close. The ErrCode task parameter is set to a non-zero following the
unsuccessful completion of this command.

6.4.25.2. File Existence Testing Command

SYNTAX: <fVariable> = FILEEXISTS <s32Expression >

EXAMPLE: $bExists = FILEEXISTS “C:\U600\Programs\Prog.Dat“

See the FILEWRITE command for a file example program.

The FILEEXISTS command will return TRUE if the specified file exists, FALSE
otherwise.

6.4.25.3. File Open Command FILEOPEN

SYNTAX: <fVariable> = FILEOPEN <s32Expression> [[<iExpression>]]

EXAMPLE: $hFile = FILEOPEN “COM2”, 2 ;open serial port 2

$hFile = FILEOPEN “\U600\Data\MyFile.dat”, 2 ;open MyFile

See COMMINIT for a serial port example program.

See the FILEWRITE command for a file example program.

The <s32Expression> is the name of the file or serial port to be opened. The
s32Expression is limited as defined by filenames.

The <iExpression> is the mode (0 by default); specify 2 for serial ports.

The <fVariable> is the file handle of the file.

The FILEOPEN command opens a serial port or a user data file. The <s32Expression >
is the name of the file or serial port to open. The filename specified may be any valid
Windows NT/95 path\filename (31 chars max.) and may use either an absolute or relative
path specification. If no path is specified, the file is assumed to be in the current program

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-37

directory (\U600\Programs by default). To open a serial port, specify a communications
port specifier, “COM1”, “COM2”, “COM3”, etc.

The <iExpression > is the mode, and refers to the mode of file access. Mode = 0 opens a
new file overwriting an existing file. Mode = 1 opens an existing file for reading. Mode =
2 opens an existing file only for appending records to the end of the file. Serial ports
should always be opened in mode 2.

The <fVariable> is the handle to the file assigned when it is opened; this allows
referencing of a particular file when multiple files are open. This variable is required, and
must be used in any subsequent FILEREAD, FILEWRITE or FILECLOSE commands.
The ErrCode task parameter is set non-zero to indicate error conditions.

Refer to the FILEWRITE command for an example program.

6.4.25.4. FILEREAD Command FILEREAD

SYNTAX: FILEREAD <fVariable>~<integer>~<parameterList>

EXAMPLE: See COMMINIT for a serial port example program.

See the FILEWRITE command for a file example program.

Where: <fVariable> is the file handle returned by the FILEOPEN command.

<mode> is a mask indicating the file read mode.

<parameterList> is the data to write to the file; this must be a series of variables,
each variable separated by white space.

FILEREAD will read data from the serial port or an ASCII file, into CNC variables on
the controller.

The FILEOPEN command must be used prior to the FILEREAD command, to provide
a file handle for the data file or serial port.

FILE FORMAT

The FILEREAD command reads one line of data at a time, where a line is terminated by a
non-printable ASCII character (a character which is not a tab, and whose ASCII code is
less that 32). The next data line begins at the next printable ASCII character. Therefore,
<CR>, or <CR><LF> etc. are all valid line terminators.

The FILEREAD command will identify items on each line, where items are separated by
whitespace.

Each item must be a value or a string (surrounded by double quotes). Values may be
integer or floating point. If an integer value is preceded by “0x” then it is interpreted to be
a hexadecimal number, otherwise, it is assumed to be a decimal number.

Extended Commands U600 CNC Programming Manual

6-38 Aerotech, Inc. Version 1.1

WHITESPACE CHARACTERS

A whitespace characters is a series of spaces, tabs or commas, except if in “European
mode” of the FILEREAD command, where a comma is not whitespace. In European
mode, the comma is interpreted as a decimal point, and thus cannot be used as a
whitespace separator. The mode parameter allows the whitespace character definition to
be defined.

VARIABLE ASSIGNMENT

The variables to contain the data, must follow the mode parameter on the command line.

Each item on the line read from the data file, is sequentially assigned to the variables on
the FILEREAD command line (first data item is assigned to the first item read, etc.)
unless, the “array-mode” is active (See the mode parameter). The variables receiving the
data may be program, task or global. However, the type of variable must match the data
read (string or numeric) must match the type of the variable or an error will be generated.
For example, the line: 0.987, “dog” could be read by: “FILEREAD $fil 0 $GLOB0
$STRGLOB0”, but not by: “FILEREAD $fil 0 $STRGLOB0 $GLOB0”.

RETURN VALUE

The FILEREAD command will return the number of data items read. If the end of the
file (EOF) has been reached, it will return 0.

MODE PARAMETER

This parameter is a bit mask, where each bit activates a specific option (see the Table
below).

Table 6-5. Mode Parameter Values

Bit # Value Meaning

0 0x1 Array mode ON

1 0x2 European mode ON

In the array mode, you provide a single variable on the FILEREAD command line,
which is an array element. The controller will read all values on the line into the array,
beginning at the given variable. Caution must be used when in array mode that the
variable specified is in fact an array element, and that the number of values in the file line
is never greater than the size of the array. Violation of this rule will cause unpredictable
results.

The European mode defines the whitespace characters.

The data on the line read is assigned to the variables specified by the user as arguments to
the FILEREAD command.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-39

6.4.25.5. FILEREADINI Command

SYNTAX: FILEREADINI <fileName >, sectionName, valueName, dafaultValue

FILEREADINI <fExpression>, sectionName, valueName,
defaultValue

EXAMPLES:

$value = FILEREADINI “c:\u600\ini\test.ini”, “TestMe”, “Test1”, -1

Or to read from the axis parameter file

$value = FILEREADINI 2, “AxisParm.1”, “KP”, 10

where;

<fileName > is the name of the .INI file

<fExpression > is an integer indicating the \U600\Ini\U600MMI.Ini file

sectionName is the name of the .INI section (the text in square brackets)

valueName identifies the entry (the text on the left-hand side of the “=”)

defaultValue is the value to returned if the entry is not found

This command will read a value from a specified entry in an ASCII text file, which is
formatted as a Windows .INI file. You can provide the name of the INI file in the first
parameter, or you can provide an integer value, which indicates an .INI file used by the
MMI. The table below indicates the integer values representing each of the MMI .INI
files. See the MMI setup page (or the \U600\Ini\U600.Ini file) for the file specifications
corresponding to the names in the second column below:

0 Axis Configuration File
2 Axis Parameter File
3 Machine Parameter File
4 Task Parameter File
5 Global Parameter File

By using these integer values you can read parameter values from the parameter files (see
example below) that the MMI automatically loads on a soft reset.

If an absolute file specification is not provided, the file will be written to the operating
systems directory. If the specified section or entry name does not exist in the file, the
“defaultValue” parameter value will be returned. If the specified file does not exist, a task
fault will be generated.

Extended Commands U600 CNC Programming Manual

6-40 Aerotech, Inc. Version 1.1

EXAMPLE PROGRAM:

file: “FILE.INI” contents:

[Section1]
Variable1 = 11
Variable2 = 22
[Section2]
Variable3 = 33

; Example program commands (results in comment at end of line):

$GLOBAL0 = FILEREADINI “FILE.INI” “Section1” “Variable2” –1 ; sets $GLOB0 to 22
$GLOBAL1 = FILEREADINI “FILE.INI” “Section1” “garbage” –1 ; sets $GLOB1 to -1

6.4.25.6. File Write Command FILEWRITE

SYNTAX1: FILEWRITE <fVariable >~<parameterList>

SYNTAX2: FILEWRITE <fileName >~<parameterList>

EXAMPLE: See File Example Program 1 on page 6-41, or File Example Program 2
on page 6-42.

See the COMMINIT command for a serial port example program.

The <fVariable> is the file handle returned by the FILEOPEN command.

The <fileName > is the file to write the data to.

The <parameterList> is the data to write to the file or serial port.

The FILEWRITE command permits the user to write one line of data to a file or a serial
port. The first parameter may be a variable specifying the file handle returned by a
successful FILEOPEN command, or the filename to write the data to. If a filename is
specified the file will be automatically opened, the data will be written, and the file will
then be closed. In this mode, text is ALWAYS appended to the file. If the file does not
exist it will be created.

The FILEWRITE command will by default, write 6 digits past the decimal point for each
value. You may specify differently in the <parameterList>. Each value is separated by a
space. Each line written by a FILEWRITE automatically terminates with a carriage
return, linefeed pair, see below.

127.000000 4096.000000 65536.000000

256.000000 8192.000000 32768.000000

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-41

FILE EXAMPLE PROGRAM 1:

; The below example, if the file operations succeeded, will write the file
;“c:\test.dat”. If any file operation fails, it will erase the c:\test.dat” file.
; The file will read as follows (except no semicolon as the 1st character)
;This is line 1
;5.000000 4.000000 3.200000 6.000000 9.000000
;Strings are allowed ! 4 along with variables
;Masks are allowed too ! 7 along with variables
;This line was appended
;
DVAR $fil $var1 $var2 $var3 $var4 $var5 ; Declare the variables
$fil = FILEOPEN “c:\test.dat” ; Open the file new
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful
$var1=5
$var2=4
$var3=3.2
$var4=6
$var5=9

FILEWRITE $fil “This is line 1” ;write line 1
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful
FILEWRITE $fil $var1 $var2 $var3 $var4 $var5 ;write line 2
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful
FILEWRITE $fil “Strings are allowed !” $var2 “along with variables” ;write

;line 3
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful
FILEWRITE $fil “Masks are allowed too !” X Y Z “along with variables” ;write

;line 4
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful

$var1=9
$var2=6
$var3=3.2
$var4=4
$var5=5

FILECLOSE $fil

$fil = FILEOPEN “c:\test.dat” 2 ; Open the file append
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful
FILEWRITE $fil “This line was appended” ; Write line 5
IF ErrCode GOTO fail; Goto fail routine if the command was unsuccessful

FILECLOSE $fil

M02 ; end of program
:fail ; error handler routine
EXE “erase c:\test.dat”
M02 ; Handle error here or end program

Extended Commands U600 CNC Programming Manual

6-42 Aerotech, Inc. Version 1.1

FILE EXAMPLE PROGRAM 2:
; The example will write data, and close it. Text will be
; appended to the file. If the file does not exist it is created.

DVAR $var1

$var1=0
WHILE $var1 < 10 DO
 FILEWRITE "C:\U600\Test.Dat", "Count ", $var1
 $var1 = $var1 + 1
ENDWHILE

6.4.25.7. FILEWRITEINI Command

SYNTAX: FILEWRITEINI <fileName>, <sectionName>, <valueName>,
<value>

FILEWRITEINI <fExpression>, <sectionName>, <valueName>,
<value>

EXAMPLES: FILEWRITEINI “c:\u600\ini\test.ini”, “TestMe”, “Test1”, $glob0

Or to write to the axis parameter file.

FILEWRITEINI 1, “AxisParm.1”, “KP”, 10

where

<fileName> is the name of the .INI file, which may contain format
specifiers.

<fExpression> is an integer indicating the U600MMI.Ini file.

<sectionName> is the name of the .INI section (the text in square brackets) ,
which may contain format specifiers..

<valueName> identifies the entry (the text on the left-hand side of the “=”),
which may contain format specifiers..

<value> is the value to be returned if the entry is not found.

This command will write a value to the specified entry in an ASCII file, formatted as a
Windows .INI file. You can provide the name of the .INI file as the first parameter, or you
can provide an integer value, which indicates an .INI file used by the MMI. The table
below indicates the integer values representing each of the MMI .INI files. See the MMI
setup page, (or the \U600\Ini\U600.Ini file) for the file specifications corresponding to the
names in the second column below:

0 Axis Configuration File
2 Axis Parameter File
3 Machine Parameter File
4 Task Parameter File
5 Global Parameter File

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-43

By using these integer values you can save parameter values into the parameter files (see
example below) so that the U600MMI will automatically reload the new value on a soft
reset.

If an absolute file specification is not provided, the file will be written to the operating
systems directory. If the section or entry name provided does not exist within the file, it
will be appended to the file. If the specified file does not exist, the file will be created.

EXAMPLE PROGRAM:

FILEWRITEINI 3, “MachParm.3” “HomeType” 2 ; Set HomeType machine

; parameter, for axis 3, to 2

6.4.26. Free axes FREE

SYNTAX: FREE <axisMask>

EXAMPLE: FREE X Y

This command should not normally be used. Axes should be bound to a task within
the axis configuration wizard and captured by another task and then released by that
task for the original (or other) task to command motion on.

This command is the opposite of the BIND command; it releases control of the axis from
the current task. Refer to the BIND command for more details.

6.4.27. FREECAMTABLE Command

SYNTAX: FREECAMTABLE <tableNumber>

EXAMPLE: FREECAMTABLE 1

Where;

tablenumber is the table number from 1 to 99.

This command frees a cam table from the controllers memory. See the Camming
Overview for more information.

Extended Commands U600 CNC Programming Manual

6-44 Aerotech, Inc. Version 1.1

6.4.28. Goto to a CNC block GOTO / JUMP

SYNTAX: JUMP <label>

<CNCBlock>

...

�<label> ; The user can equivalently use: <label>:

<CNCBlock>

The GOTO command, along with the colon symbol, will “go to” or transfer execution to
another location in the program. Instead of proceeding with the next sequential program
block, execution immediately proceeds to the command following the label command
with the colon. The colon can appear before or after the label name. Also, the
programmer can use the IF-GOTO form when conditionally executing a GOTO.

The named location can appear anywhere in the program, before or after the line
containing the GOTO, or within a subroutine. There is no limit to the number of GOTOs
that may reference the same label, but a label can only be defined (using the colon) once
in a program.

In any circumstance, the block commands; DFS, IF, REPEAT, and WHILE, can
alternately be used instead of the GOTO. We strongly recommend that the programmer
avoid the use of the GOTO by using block commands, in order to improve the readability
of the program.

There is no difference in program speed between code using GOTOs and code using
block commands. All of these translate into “GOTOs” in the object code.

We strongly recommend that the user not jump into block structures, since this can make
code very confusing. For example, if a GOTO statement jumps into a DFS defined
subroutine, then execution will not return (as in a normal DFS call) back to the point of
the go to at the ENDDFS command. The ENDDFS command will simply be ignored and
execution falls through to the statement immediately following the ENDDFS.

EXAMPLE PROGRAM:

goto setIO
M02 ; This line is never executed, because of the goto above it

:setIO
$BO1 = 1
M02

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-45

6.4.29. HANDWHEEL Command HAND / HANDWHEEL

SYNTAX: HAND <encoderCh> <axis> <dist_per_encoder_count>

Where:
encoder_ch - specifies the encoder channel the handwheel is

connected to (0-32).
axis - is the axis to be positioned by the handwheel.
dist_per_encoder_count - is the distance the axis will move for each count of

the handwheel in user units.

The <dist_per_encoder_count> parameter may be specified as negative value to
reverse the direction of the axis.

The HANDWHEEL command permits the user to manually position an axis with a hand
wheel having a standard quadrature encoder output (or with any other device having the
same). The hand wheel connects to the UNIDEX 600 Series controller via a spare
encoder channel input, so X4 multiplication will be done on the hand wheel quadrature
signal producing four times the number of counts per revolution specified by the
handwheel manufacturer. Some hand wheels actually produce four counts per step of the
hand wheel, so in these cases there will be 16 increments of the axis for each handwheel
step. Large values for the distance parameter will produce jerky motion, since the axis
will “jump”, the dist_per_encoder_count for each handwheel step, possibly causing one
of the axis faults to disable the axis. Disabling the VFF and AFFGAIN axis parameters
provides smoother hand wheel operation, then re-enable them after completion of the use
of the handwheel.

The encoder channel parameter may specify any of the sixteen possible encoder channels,
1 through 16 (channels 5 through 16 are located on the encoder expansion cards 1 through
3 respectively). It may also specify the commanded positions of axes 1 through 16 by
specifying an encoder channel of 17 through 32, respectively. Specify encoder channel
zero (0) or distance of zero (0) to disable the hand wheel command for a particular axis.

The user may execute multiple handwheel commands sequentially to permit simultaneous
multi-axis positioning, since this is an asynchronous command; see the example program.

If you repeatedly “handwheel” and “de-handwheel”, you may have to set the
MASTERPOS axis parameter before enabling gearing to avoid 32-bit overruns and
resultant jerky motion of the slave.

WARNING

Extended Commands U600 CNC Programming Manual

6-46 Aerotech, Inc. Version 1.1

EXAMPLE PROGRAM:
HAND 3 X .01 ;Position X axis via handwheel on encoder channel 3
HAND 4 Y .1 ;Position Y axis via handwheel on encoder channel 4
MSGDISPLAY 0 “Press OK when finished positioning”
MSGSHOW
HAND 0 Y .1 ;Disable Y positioning
HAND 0 X .01 ;Disable X positioning
MSGHIDE

6.4.30. Home Command HOME / REF

SYNTAX: HOME <axisMask>

The HOME or REF command will home the specified axes to their hardware zero
reference point. There are several types of home cycles, and parameters that affect
homing. Axes may be forced to be homed and a homing sequence may be defined via the
Home Setup on the MMI Options Page of the Setup page. Axes may be manually homed
via the Jog page.

Once issuing this command, parts program execution halts until all axes are “in-position”
at their respective hardware home (absolute reference) positions.

If a virtual axis is homed, it will immediately set the position to the home position, rather
than simulating any motion. If an axis is in the simulation mode or machine lock mode
when it is homed, it will immediately set the current position to the value of the
HomeOffsetInch (or HomeOffsetDeg) task parameter.

Homing will cancel all fixture offsets and presets.
Homing will disable normalcy, cutter offset and cutter radius compensation modes.

The HOME and REF commands may be used interchangeably.

EXAMPLE PROGRAM:

HOME X Y ; The X and Y axes are sent home simultaneously.
REF X Y ; Initiate a homing sequence simultaneously on the X and Y axes.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-47

6.4.31. HOMEASYNC Command HOMEASYNC

SYNTAX: HOMEASYNC <axisLetter>

The asynchronous Home command is the same as a synchronous home, except, it is
asynchronous and the user may only home one axis at a time. There are several types of
home cycles, and parameters that affect homing.

The move is asynchronous and program execution resumes immediately after the move
starts. The controller does not wait for the home cycle to end before continuing on to the
next command.

If a virtual axis is homed, it will immediately set the position to the home position, rather
than simulating any motion. If an axis is in the Dry Run mode when it is homed, the home
command will never complete, because the axis does not move in this mode.

The home speed is determined by the machine parameters, just like the synchronous home
cycle. Refer to the HOME command for more details.

Homing will disable normalcy, cutter offset and cutter radius compensation modes.
Homing will cancel all fixture offsets and presets.

EXAMPLE PROGRAM:

HOMEASYNC X ;The X axis begins homing and the program continues.

6.4.32. IF Command IF ... THEN ... ELSE ... ENDIF

The IF command, useable in one of two contexts; as a directive to conditionally goto to a
predefined program location, or as a directive to conditionally execute a block of
commands. In either case, the user must supply a conditional expression. Refer to
Chapter 3: Expressions, for descriptions on expressions.

Extended Commands U600 CNC Programming Manual

6-48 Aerotech, Inc. Version 1.1

6.4.32.1. IF ... GOTO command

SYNTAX: IF <conditionalExpression> GOTO <label>

EXAMPLE: IF ($GLOB0 > 5) GOTO exit
IF $GLOB5 GOTO exit

The IF command will first evaluate the expression. If the expression evaluates to non-zero
(TRUE), then execution transfers to the CNC line immediately following the specified
label (a line label has a colon before or after it). If the expression evaluates to zero
(FALSE), then no action takes place and the line immediately after the IF statement
executes.

Normally, a conditional operator is used in the expression, (see the first example above),
but, this is not necessary (see the second example above). In the second example, the
branch is taken if global variable five is non-zero.

EXAMPLE PROGRAM:
if ($BI1 EQ 1) goto stopSpindle
M02 ; Normal exit

:stopSpindle
M5
M02 ; error exit

6.4.32.2. IF ... THEN Command

SYNTAX: IF <conditionalExpression> [[THEN]]
...

[[ELSE IF <conditionalExpression>]]
...

[[ELSE IF <conditionalExpression>]]
...

[[ELSE]]
...

ENDIF

The ellipses ‘…’ above indicate a series of zero or more CNC program lines. The user
may have any number of ELSE IFs, but only one ELSE. The user cannot have any ELSE
IFs after the ELSE. The THEN statement is optional.

This construct permits the user to execute a group of program blocks only if a specified
condition is true. Using the ELSE statement, the user can execute an alternative group of
program blocks if the condition is determined to be false. Finally, using the ELSE IF, the
user can test multiple conditions in a sequence.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-49

The CNC blocks in between the IF and the next ELSE IF, ELSE, or ENDIF (whichever
comes first) are the blocks that execute when the IF conditional expression is true. If the
IF conditional is false, then execution transfers to the next ELSE IF, ELSE or ENDIF,
whichever comes first. If that command is:

1. ENDIF, then execution transfers to the command following the
ENDIF.

2. ELSE, then it executes the CNC blocks between the ELSE and the next
ENDIF.

3. ELSE IF, then it evaluates the ELSE IF conditional in exactly the
same way as the IF conditional statement.

The ENDIF reserved word terminates the entire construct. IF THEN commands may be
nested within each other or WHILE or REPEAT loops (see the following example). There
is no limit to the level of nesting, except those imposed by available memory.

EXAMPLE PROGRAM:
; This example determines what quadrant the current XY coordinate is in.
; (quadrant 1 is X>0,y>0 and quadrant 4 is X<0,y<0 etc.)
; If X,Y, is on the origin, it sets the quadrant number to 0

IF (POSCMD.X > 0)
 IF (POSCMD.Y > 0)

 quadrant = 1
 ELSE IF (POSCMD.Y < 0)
 quadrant = 4
 ELSE
 quadrant = 1 ; Let points on +X axis be in quadrant 1
 ENDIF
 ELSE IF (POSCMD.X < 0)
 IF (POSCMD.Y > 0)
 quadrant = 2
 ELSE IF (POSCMD.Y < 0)
 quadrant = 3
 ELSE
 quadrant = 2 ; Let points on -X axis be in quadrant 1
 ENDIF
 ELSE ; X must be zero to get here
 IF (POSCMD.Y > 0)
 quadrant = 2 ; Let points on +Y axis be in quadrant 1
 ELSE IF (POSCMD.Y < 0)
 quadrant = ; Let points on -Y axis be in quadrant 3
 ELSE
 quadrant = 0 ; This point is the origin, do not know the quadrant
 ENDIF
 ENDIF

Extended Commands U600 CNC Programming Manual

6-50 Aerotech, Inc. Version 1.1

6.4.33. INDEX Command INDEX

SYNTAX: INDEX <axisLetter> <distance> <speed>

Where: distance and speed are <fExpressions>

EXAMPLE: INDEX X 50. 300.

The asynchronous motion command initiates a relative move on a designated axis at the
specified speed, then continues with the next program line without waiting for the index
to finish. Distance is specified as a signed parameter in user units and velocity is specified
in user units/minute.

The move is an asynchronous motion command so program execution resumes
immediately after the move starts. The controller does not wait for the move to end before
continuing on to the next command.

The INDEX command uses the same acceleration/deceleration axis parameters as a G0
command. It does not use the acceleration/deceleration task parameters, like a G1
command.

6.4.34. IsAvail, Axes Available Command

SYNTAX: ISAVAIL (axismask)

EXAMPLE: IF(ISAVAIL(Zx)&&(SQRT($glob8==0))then

…

endif

The ISAVAIL command returns a TRUE (1), if the axes specified are all of the
following:

1. The axis is not moving (the bms_moving bit is not set – i.e., the axis is not
executing a G0, G1, HOME or asynchronous move command).

2. The axis is not synced up (the bms_sync bit is not set).

Otherwise, it returns FALSE (0), where the bms_bits are in the system status.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-51

6.4.35. Camming Motion Overview

Electronic camming (master/slave) functions allow the user to command master/slave
motion. Master/slave motion was originally developed for grinding cam shafts, but has
many other uses, such as forcing an axis to follow a handwheel. For historical reasons
master/slave motion is alternately referred to as "camming".

The camming mode allows you synchronize an axis (the slave) to another axis (the
master) and command the master, thereby indirectly moving the slave axis. Master/slave
motion is the most general form of motion allowing the user to command slave axes to
move with virtually any position or velocity profile. Furthermore, by synchronizing
multiple slave axes to a common master, or by using slave axes as masters to other axes,
the user may move multiple axes in a fully synchronized manner. Another major
advantage of camming motion is that the controller performs camming independently of
other forms of motion. This allows the programmer to infeed or command motion "on top
off" the camming motion. Finally, camming is more efficient then regular contoured
motion, since it is far simpler for the controller to process cam points than CNC lines.
When you need to program a series of moves that are only a few milliseconds long,
camming is the preferred choice.

However, there is a drawback to the master/slave motion, the programmer must
understand and do more to achieve the proper results.

Camming motion is performed independently of other motions. It is not effected by
the setting of any G code, global, machine or task parameter. Camming is only
controlled by the camming commands, the parameters given to those commands, and
a few related axis parameters. These commands and the parameters are described in
the below sections.

Camming does not provide any acceleration limiting or feedrate limiting or automatic
acceleration features, so it is easier to accidentally program “jerks” in the motion.
The velocity and acceleration of the slave axis is defined solely by the master motion,
the cam table, and the synchronization process, and is not limited in any fashion
(SYNC mode 3 is the only exception, providing some acceleration limiting).

There are four types of camming motion that can be performed, listed here from the
simplest to the most complex:

Handwheel Motion : user controlled handwheel motion
Gearing : ratioed to another axis
Tracking : same as gearing, but with velocity ramping
File-Driven (typical master/slave camming) : arbitrary velocity/distance from a file

WARNING

WARNING

Extended Commands U600 CNC Programming Manual

6-52 Aerotech, Inc. Version 1.1

Any or all of the following steps may be required to configure camming motion, based
upon the type of camming motion being generated (Table 6-6).

Table 6-6. Configuring Camming Motion

Configuration Step Handwheel Gearing Tracking File-driven

0. Select the master axis Master selection Master selection Master selection Master selection

1. Configure the master CFGMASTER CFGMASTER CFGMASTER LOADCAMTABLE

2. Load the Cam table Not Applicable Not Applicable Not Applicable LOADCAMTABLE

3. Initialize Master position MASTERPOS MASTERPOS MASTERPOS MASTERPOS

4. Set Camming Parameters

5 Synchronization HANDWHEEL GEARMODE TRACK SYNC

6. Monitor Camming Motion

After step 5 the slave is activated and will respond to master motion. You can move the
master using any other form of motion. The master can even be a slave to yet another
master (for example, see Synchronizing multiple axes). Note that you may or may not be
able to perform step 5 (and step 6 below) while the master is moving, see the particular
step 3 command listed above for details. After the master/slave motion is complete you
should perform the following cleanup activities:

Table 6-7. Configuring Camming Motion Cleanup

Configuration Step Handwheel Gearing Tracking File-driven

7. Un-Synchronize the axes HANDWHEEL GEARMODE ENDM SYNC

8. Free the Cam table Not Applicable Not Applicable Not Applicable FREECAMTABLE

After step 6 you may move the master axis without the slave moving.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-53

6.4.35.1. Axis Parameters Affecting Camming

MASTERPOS, MASTERLEN

CAMOFFSET, CAMADVANCE, MAXCAMACCEL (file-driven/handwheel only)

CAMPOSITION, CAMPOINT (file-driven only)

GEARSLAVE, GEARMASTER, GEARMODE (gearing and tracking only)

6.4.35.2. Axis Parameters Used To Monitor Camming Motion

The following read-only parameters are rarely required, but, may be used to monitor the
camming process.

MASTERPOS, MASTERRES

CAMPOSITION, CAMPOINT (file-driven only)

6.4.35.3. Camming Performance Tip

For best results, the master axis resolution (CntsPerInch / CntsPerDeg) should be equal
or greater then the slave axes resolutions. The resolution of the slave motion will only be
as good as the smaller of the two axes CntsPerInch values. This applies even if the master
axis is a virtual axis.

In the case of virtual axes, the CntsPerInch (or CntsPerDeg) machine parameter may be
arbitrarily scaled up to match the slave axes resolutions. However, if a virtual master is
scaled up such that it exceeds 216 counts/sec, then the plotting utilities will display a rolled
over position (-216). This problem does not effect actual motion, as the actual velocity
counter used is 32-bit.

6.4.35.4. Master Axis Selection

At least two axes are involved in any master/slave motion. The axis whose motion is
dependent upon the other is the slave axis, and a user specified master axis is used to
command the slave. The master axis may be an existing axis, a handwheel, or a virtual
axis. If you want to base axes motion on another axes motion, clearly the master axes
needs to be a real axes, or all slave motion must be pre-computed against time, with a
virtual axis being the master, commanded at a constant velocity, synchronizing all slave
axes. However, if all you want to do is provide a velocity or distance profile to a single
axis, then your master should be configured as virtual.

Extended Commands U600 CNC Programming Manual

6-54 Aerotech, Inc. Version 1.1

It is recommended, where possible, that you select your axes such that the master axis has
a smaller axis index then the slave. For example, X as the master and Y as the slave axis
is preferred, than vise versa. This is because when the master axis has a higher axis index
than the slave, and the master axis is not moving at a constant speed, a slight mis-tracking
will exist. The MASTERPOS read by the slave is not equal to the position of the master.
This “following error” is equal to the acceleration of the master (in cnts/msec squared)
and is usually only a few counts.

Finally, if the master is a rotary Type axis, you must consider setting the MASTERLEN
axis parameter to avoid 32-bit overruns of the MASTERPOS.

6.4.35.5. Synchronizing Multiple Axes

You may synchronize multiple axes to a single master axis, or form a chain of
master/slave relationships. All the master slave axes relationships are treated
independently. The following example uses the HANDWHEEL command to synchronize
multiple axes, but you may use any camming motion type, or combinations of types, in a
similar manner.

For example, to have the Y and Z axes follow the X axis:

; synchronize the Y axis to the X
HANDWHEEL <encoderCh> Y <dist_per_encoder_count>
; synchronize the Z axis to the X
HANDWHEEL <encoderCh> Z <dist_per_encoder_count>
;
; Command X axis Motion, G1, Joystick , etc.
;
; Disable slaving action below
HANDWHEEL 0 Y 0
HANDWHEEL 0 Z 0

The <dist_per_encoder_count> specified may be negative to reverse the direction of
either slaved axis.

You must specify the encoder channel numbers of the Y and Z axes above. After doing
so, any motion commanded on the X axis will cause corresponding motion on the Y and Z
axes, based upon the value and sign of the <dist_per_encoder_count> specified for each
slave axis.

6.4.35.6. Camming Motion from a File

For each master/slave relationship, the programmer must provide a table of coordinates (a
cam table) that specify slave axis positions/velocities for each master axis position. These
coordinates must be provided in an ASCII file.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-55

Figure 6-2. Master/Slave Profile

When the current position of the master axis is a value specified in one of the above
points, then the slave axis position will take on the corresponding slave value of the point.
If the current master position lies in between points specified in the table, then the slave
position is found by either linear or spline interpolation of the adjacent points, (see the
SYNC command). However, if the current position of the master is outside the range of
the master values provided by the user, then the current master position will be “wrapped”
so as to fall within the specified values in the table. For example, if the master points in
the table range from 0 to 10, and the master axis is currently at position 12, then the
master point for value 2 will be used. Therefore, if the master axis is not rotary, the user
should provide points for the entire range of potential master motion.

The slave axis can act as a master to another axis, allowing the user to direct multiple axes
in master/slave motion. Also, instead of slave axis positions, the programmer may specify
slave axis velocities for given master axis positions (see SYNC mode 3). One can also add
an "infeed" onto the slave while it is camming. The infeed is specified as a position and
speed, (see the FEDM command) and the required motion produced by the infeed will be
added onto the cam directed motion.

Extended Commands U600 CNC Programming Manual

6-56 Aerotech, Inc. Version 1.1

The basic steps needed to direct master/slave motion are listed below with the function(s)
detailing that step.

1. Load the Cam table.
2. Optionally, offset the cam table via the slaves CAMOFFSET axis parameter.
3. Synchronize the axis.
4. Generate master axis motion.
5. Un-Synchronize the axes.
6. Free the Cam table.

The axis needs to be enabled before step 4 in the above procedure.

Care should be taken when engaging cam table motion as it’s incorrect application
may result in abrupt changes in slave velocity. Make sure that the master axis is
stationary when engaging or disengaging cam table motion for best results.

6.4.35.7. Infeeding Overview

The UNIDEX 600 controller generates velocity commands that are translated into torque
by the motors. These velocity commands the controller generates for each motor is
actually the sum of two separate velocity commands:

Velocity_cmd = Camming_Velocity_command + Non-camming_Velocity_command
command + AUXVELCMD_generated_Velocity_command

The camming velocity command is computed based on the current (if any) camming
motion, and the non-camming velocity command is computed based on the current (if
any) synchronous and asynchronous motion. This command summation allows the
programmer to independently direct two motions. For example, the camming motion can
direct a tool to follow the contour of an irregular rotating piece (a cam) at a constant
distance from its surface. The programmer can then use asynchronous motion to infeed or
slowly move the tool closer to the surface (synchronous motion can not be done
concurrently with camming motion). Furthermore, in complex configurations, the user
may add more velocity command via the AUXVELCMD axis parameter. AUXVELCMD
generated velocity command is more general then camming, and can be added to any
other type of motion.

6.4.35.8. Asynchronous Motion Commands

Asynchronous motion commands, cause CNC program execution to continue on to the
next program block immediately after the move starts. The controller does not wait for the
move to end before continuing on to the next command, therefore the task will be
executing other statements while the motion is proceeding. Asynchronous motion gives
you the freedom to complete other actions while performing a time consuming move.
However, it is the programmer’s responsibility to insure that the asynchronous motion has
actually completed, if a subsequent command depends upon the completion of this
motion. For example, a slow carriage move might need to be completed before a part

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-57

loader can approach the carriage to avoid a collision. The two other available types of
motion are synchronous and camming. Asynchronous motion commands also include the
AerMovexxx library commands.

ENDM - end motion
FEDM - in-feed an axis, in addition to other motion in progress
HOMEASYNC - home an axis without waiting for completion
INDEX - move incrementally
MOVETO - move to an absolute position
OSC - oscillate (cycle at the specified distance and velocity)
STRM - free run an axis at the specified velocity

If you start an asynchronous motion command on an axis before a previous asynchronous
motion command on that axis has completed, it will immediately abandon the previous
command, then perform the second command.

You cannot generate asynchronous motion while polar (G46) or cylindrical (G47)
transformation modes are active.

Although they do not wait for the end of the move, asynchronous motion statements will
wait until the following conditions are satisfied before proceeding onto the next
statement: (these restrictions do not apply to the ENDM command):

1. FeedHold is not active.

2. No axis specified in the move is still moving in response to another non-
camming motion command (G0 /G1 or other asynchronous move)

3. The done bit of the SERVOSTATUS axis parameter is off for each axis in the
move.

4. The “moving” bit of the MOTIONSTATUS axis parameter is set on for each
axis in the move (The “Profile” bit in the STATUS axis parameter indicates if
G1/G2/G3 commands are executing.

The last condition can also be used to test whether an asynchronous motion command has
completed. For example, the following example program could be used to monitor motion
initiated from an asynchronous motion command, setting binary output 1 on when it
starts, and setting it off when its done::

EXAMPLE PROGRAM:
#include “\u600\programs\aerstat.pgm” ; need this included at top of program
INDEX X 100 100 ; starts X moving
$BO1 = 1
;
; You may complete other tasks (commands) here, while the X axis is moving !
;
WHILE(MOTIONSTATUS.X & MOTIONSTATUS_Moving) ; Wait till X is done moving,

; this does not mean that it is In-Position!
ENDWHL
WHILE(SERVOSTATUS.X & SERVOSTATUS_InPosition) ; Wait till x axis is in-position
ENDWHL

$BO1 = 0

Extended Commands U600 CNC Programming Manual

6-58 Aerotech, Inc. Version 1.1

Asynchronous motion commands have another important use, they can be used while
camming motion is active. This allows the programmer to infeed.

6.4.35.9. Camming Example Program
; ExCam.Pgm (Ref. Jol_Cam.Cam also)
;
; Electronic Cam Table Example program
DVAR $TableNumber, $Interpolation
;
; Motion Setup (C is the master axis, Z is the slave axis)
;
E100 ; define rotary axes RPM
G91 G70 ; absolute, metric modes
DRIVE.C = 1 ; enable the drives
DRIVE.Z = 1
$TableNumber = 3
CAMOFFSET.C = 0 ; set zero offset into table

; Turn off camming (if it was on)
SYNC Z $TableNumber 0 ; disable any active sync.

; Home the axes, as required.
REF Z C ; home the axes

; Activate camming
$Interpolation = 0 ; use mode 1 for splines
LOADCAMTABLE C $TableNumber Z $Interpolation “\u600\programs\Jol_Cam.cam"

MASTERPOS.Z= POSCMD.C
SYNC Z $TableNumber 1 ; Sync. Z axis to table 0, mode 1

; Here we move the master (C), which moves the slave (Z)
M0
G91 ; incremental programming mode
STRM C 1 100

; Disable camming when complete !
SYNC Z $TableNumber 0 ; disable any active sync.

; Master axis motion will not command slave axis motion.
FREECAMTABLE $TableNumber ; release memory for the cam table

M2

6.4.35.10. Cam Table Format

The cam table file consists of data lines and comment lines. A line is defined as a string of
characters, terminated by any number of consecutive line terminator characters. A line
terminator character is a carriage return or a line feed.

Data lines are defined as those with the first "non-whitespace" character as a numeric
character. All other lines are comment lines. Whitespace characters are the tab, formfeed,
comma, or space character. A numeric character is a digit, decimal point, or minus sign.

The format of the ASCII file is described in the paragraphs below:

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-59

COMMENT LINES:

The file must contain comment lines preceding the first data line, that provide three pieces
of information:

The number of points in the file.

The units of the master position values.

The units of the slave position values.

The number of target points must be preceded by the keyword: "Number of Points" The
first numeric character after this keyword will begin the number read in as the number of
target positions. One data line must be read for each target position. The units of the
position values must be preceded by the keyword: "Master Units". The first non-
whitespace character which is not a "(" will begin the master position units descriptor.
Position units descriptors may be "nanometers", "deg", "degrees", "mm", "in", "microns",
"millimeters", or "inches". Identification of the master position units descriptor is not as
sensitive.

The units and scale factor of the slave position values must be preceded by the keyword:
"Slave Units(". The first non-whitespace character which is not a "(" will begin the slave
scale factor. The slave scale factor is optional, and assumed to be one, if not specified.
The first non-whitespace character after the slave scale factor must be the slave position
units descriptor. Slave Position Units descriptors can be "nanometers", "deg", "degrees",
"mm", "in", "microns", "millimeters", or "inches". Identification of the slave position
units descriptor is not case sensitive.

DATA LINES:

Each data line must contain three numbers, the first of which must be an integer. All text
following the first three numbers will be ignored. The numbers must be separated by one
or more whitespace characters.

The first number is the point number. It must be a positive integer. These point numbers
are not used.

The second number is the master position value. This value is assumed to be in the units
specified in the comment lines at the beginning of the file.

The third number is the slave value that goes with the position value. It is assumed to be
in the units specified in the comment lines at the beginning of the file, i.e. if the value read
in is -2, and the slave axis scale factor compensation read in was .25 microns, then the
actual compensation value is -.5 microns.

Extended Commands U600 CNC Programming Manual

6-60 Aerotech, Inc. Version 1.1

6.4.35.11. Cam Table Format Example

; Filename: Jol_Cam.Cam (See ExCam.Pgm also)

Number of Points 206
Master Units (deg)
Slave Units (inch)
0001 0.000 .3720
0002 1.000 .3720
0003 1.928 .3719
0004 2.857 .3716
0005 3.785 .3711
0006 4.714 .3704
0007 5.642 .3695
0008 6.571 .3684
0009 7.499 .3671
0010 8.427 .3655
0011 9.356 .3638
0012 10.284 .3619
0013 11.213 .3598
0014 12.141 .3575
0015 13.070 .3550
0016 13.998 .3522
0017 14.927 .3493
0018 15.857 .3462
0019 16.786 .3429
0020 17.717 .3393
0021 18.648 .3356
0022 19.580 .3317
0023 20.513 .3276
0024 21.447 .3233
0025 22.383 .3188
0026 23.320 .3142
0027 24.259 .3093
0028 25.200 .3043
0029 26.144 .2991
0030 27.090 .2937
0031 28.039 .2882
0032 28.990 .2825
0033 29.945 .2766
0034 30.902 .2706
0035 31.863 .2645
0036 32.828 .2583
0037 33.795 .2519
0038 34.766 .2454
0039 35.739 .2389
0040 36.716 .2322
0041 37.696 .2255
0042 38.679 .2187
0043 39.664 .2118
0044 40.651 .2049
0045 41.640 .1979
0046 42.632 .1909
0047 43.625 .1839

0048 44.619 .1769
0049 45.615 .1698
0050 46.612 .1627
0051 47.611 .1556
0052 48.611 .1485
0053 49.614 .1414
0054 50.618 .1343
0055 51.626 .1272
0056 52.637 .1201
0057 53.653 .1130
0058 54.674 .1059
0059 55.703 .0989
0060 56.739 .0919
0061 57.785 .0850
0062 58.842 .0782
0063 59.911 .0715
0064 60.993 .0649
0065 62.088 .0586
0066 63.198 .0525
0067 64.320 .0468
0068 65.454 .0414
0069 66.595 .0364
0070 67.740 .0320
0071 68.884 .0280
0072 70.024 .0245
0073 71.159 .0215
0074 72.284 .0189
0075 73.400 .0168
0076 74.504 .0150
0077 75.594 .0135
0078 76.670 .0124
0079 77.733 .0115
0080 78.781 .0107
0081 79.816 .0101
0082 80.840 .0096
0083 81.854 .0091
0084 82.860 .0087
0085 83.862 .0083
0086 84.862 .0079
0087 85.862 .0075
0088 86.862 .0071
0089 87.862 .0067
0090 88.862 .0063
0091 89.862 .0059
0092 90.862 .0055
0093 91.862 .0051
0094 92.862 .0047

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-61

0095 93.862 .0043
0096 94.862 .0039
0097 95.862 .0035
0098 96.862 .0031
0099 97.862 .0027
0100 98.862 .0023
0101 99.862 .0018
0102 100.865 .0014
0103 101.876 .0011
0104 102.894 .0007
0105 103.918 .0004
0106 104.944 .0002
0107 105.967 .0001
0108 106.986 .0000
0109 107.996 .0000
0110 109.000 .0000
0111 110.000 .0000
0112 179.000 .0000
0113 180.000 .0000
0114 267.000 .0000
0115 268.000 .0000
0116 269.004 .0000
0117 270.015 .0000
0118 271.035 .0001
0119 272.066 .0003
0120 273.104 .0005
0121 274.149 .0009
0122 275.198 .0014
0123 276.248 .0021
0124 277.297 .0029
0125 278.344 .0039
0126 279.387 .0050
0127 280.428 .0063
0128 281.466 .0076
0129 282.504 .0091
0130 283.544 .0107
0131 284.588 .0124
0132 285.641 .0143
0133 286.706 .0164
0134 287.784 .0188
0135 288.880 .0215
0136 289.992 .0245
0137 291.120 .0280
0138 292.260 .0320
0139 293.405 .0364
0140 294.546 .0414
0141 295.680 .0468
0142 296.802 .0525
0143 297.912 .0586
0144 299.007 .0649
0145 300.089 .0715
0146 301.158 .0782
0147 302.215 .0850
0148 303.261 .0919
0149 304.297 .0989
0150 305.326 .1059

0151 306.347 .1130
0152 307.363 .1201
0153 308.374 .1272
0154 309.382 .1343
0155 310.386 .1414
0156 311.389 .1485
0157 312.389 .1556
0158 313.388 .1627
0159 314.385 .1698
0160 315.381 .1769
0161 316.375 .1839
0162 317.368 .1909
0163 318.360 .1979
0164 319.349 .2049
0165 320.336 .2118
0166 321.321 .2187
0167 322.304 .2255
0168 323.284 .2322
0169 324.260 .2389
0170 325.234 .2454
0171 326.205 .2519
0172 327.172 .2583
0173 328.137 .2645
0174 329.098 .2706
0175 330.055 .2766
0176 331.010 .2825
0177 331.961 .2882
0178 332.910 .2937
0179 333.856 .2991
0180 334.800 .3043
0181 335.741 .3093
0182 336.680 .3142
0183 337.617 .3188
0184 338.553 .3233
0185 339.487 .3276
0186 340.420 .3317
0187 341.352 .3356
0188 342.283 .3393
0189 343.214 .3429
0190 344.143 .3462
0191 345.073 .3493
0192 346.002 .3522
0193 346.930 .3550
0194 347.859 .3575
0195 348.787 .3598
0196 349.716 .3619
0197 350.644 .3638
0198 351.573 .3655
0199 352.501 .3671
0200 353.429 .3684
0201 354.358 .3695
0202 355.286 .3704
0203 356.215 .3711
0204 357.143 .3716
0205 358.072 .3719
0206 360.000 .3720

Extended Commands U600 CNC Programming Manual

6-62 Aerotech, Inc. Version 1.1

6.4.36. LOADCAMTABLE Command

SYNTAX:

LOADCAMTABLE<masteraxis><tableNumber><slaveAxis><interpolationType><filename>

Where:

<masteraxis> is the master axis number.

<tablenumber> is the table number from 0 to 99.

<slaveAxis> is the slave axis number.

<interpolationType> is either 0 (linear) or 1 (cubic spline.)

<filename> is filename

<flag> 0 = slave tracks master position feedback

1 = slave tracks master position command

EXAMPLE: LOADCAMTABLE C 1 Z 0 “\U600\Programs\Jol_Cam.Cam”

For best results, the master axis resolution (CntsPerInch / CntsPerDeg) should be
equal or greater then the slave axes resolutions. This applies even if the master axis is
a virtual axis.

In the case of virtual axes, the CntsPerInch (or CntsPerDeg) machine parameter may
be arbitrarily scaled up to match the slave axes resolutions.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

This function will read an ASCII file containing master position (or master position
command) and slave position (or slave velocity) information, download the table to the
controller and configure the master and slave axes. The flag parameter is used to
determine if the master position feedback or master position command is to be used. The
mode argument of the SYNC command to determine if slave position or slave velocity is
specified.

Each line in the file is one cam table point. After the first data line is read from the file, an
EOF (end of file) or comment line, will terminate the file and it will be closed, and the
cam table points downloaded to the controller. Each cam table point will occupy 24 bytes
of memory on the controller and all points allocated will be filled with zeros after
allocation. Table numbers can range from 0 to 99.

The interpolation type specifies either cubic or linear splining. A cubic spline is used for
maximum "smoothness", and linear for minimum "rippling". The splines are 3rd order,

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-63

but are not true Bsplines. In true Bsplines, an entire n by n matrix (where n is the number
of points) must be solved to obtain values for all the points. Instead, for speed and
memory optimization a 2 by 2 matrix for each pair of points, carrying the resultant
derivatives over to the adjacent pair as the boundary conditions for the next splining
point. The results are nearly identical to true Bsplines and in some cases are preferable.

Once SYNCed, the controller will then use the current master axis’ position as an index
into the cam table, to obtain the slaves position value. This value is then used as the
commanded position of the slave axis. The LOADCAMTABLE function must be
executed before the SYNC command. The successful engagement of the cam table can be
verified by testing the sync mode bit of the STATUS (AerStat) axis parameter for the
specified slave axis after executing the SYNC command.

All cam table entries consist of a master position and a slave value, where no two table
entries have the same master position (see Cam Table File Format or the
AerCamTableSetPoint function in the Library Reference manual for more details on table
entries). If the current master position is equal to a table entry’s master position, then the
value from that entry in the table is used as the current slave value. If however, the current
master position lies in-between two master positions listed in the table, then either linear
or spline (see InterpolationType parameter) interpolation is used to find a slave value
between the two slave values listed in the table. Finally, if the current master position lies
outside of the table, that is, if the current position of the master is outside the range of the
master values provided by the user, then the current master position will be “wrapped” so
as to fall within the values specified in the table. For example, if the master points in the
table range from 0 to 10, and the master axis is currently at position 12, then the master
point for value 2 will be used. Therefore, if the master axis is not rotary, the user should
provide points for the entire range of potential master motion.

6.4.37. #MAKENCODESLABELS

SYNTAX: #MAKENCODESLABELS

The #makencodeslabels statement directs the controller to convert all N codes in the CNC
program to labels, for use with the M97 and M98 M codes. Otherwise, the N codes are
ignored. However, always converting N codes to labels can unnecessarily waste memory
on the controller, which can be a concern for large programs with lots of N code labels.

This command must be within the main CNC program, it cannot be within an
included file.

Extended Commands U600 CNC Programming Manual

6-64 Aerotech, Inc. Version 1.1

6.4.38. MAP Command MAP

SYNTAX: MAP <axisPoint>
except: the floating point expressions for each axis must evaluate to an integer.

Axis mapping is performed on a per task basis. The mapping relates a task axis (X, Y,
Z,...) to a physical axis. All task related functions and commands use the task axes. At
execution time the task axes are translated into physical axes. This unique mapping per
task, allows the use of all axis identifiers for each task. Also, it allows the same program
to run on different tasks, controlling different sets of axes, with each task having a set of
axes by the same axis names.

The physical axis numbering is one-based (i.e., the first physical axis is 1).

If the expressions provided do not evaluate to integers, the UNIDEX 600 Series
Controller generates a fault. All axes to be mapped, must be free, or unbound. If the user
tries to MAP an axis that is bound, the UNIDEX 600 Series Controller generates a fault.

EXAMPLE PROGRAM:

MAP X1 Y2 Z3 ; X now means channel 1, Y channel 2, etc.
MAP X3 Y2 Z1 ; X now means channel 3, Y channel 2, etc.

6.4.39. MaskToDouble Command

SYNTAX: <variable>=MASKTODBL <axisMask>

EXAMPLE: $GLOB0 = MASKTODBL X Y Z ;$GLOB0 = 7(1+2+4)

The MASKTODBL command converts a task axis mask to its equivalent integer value.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-65

6.4.40. MOVETO (Asynchronous Absolute Move) Command

SYNTAX:MOVETO <axisLetter> position speed

Where: position and speed are <fExpressions>

EXAMPLE:MOVETO X 50. 300.

The asynchronous motion command initiates the move of an axis to a specified absolute
position at the specified speed, then continues with the next program line without waiting
for the move to finish. The absolute position is specified in user units, velocity is
specified in user units/minute. The move direction is determined via the commanded
absolute position, which is in user units.

The move is an asynchronous motion command so program execution resumes
immediately after the move starts. The controller does not wait for the move to end before
continuing on to the next command.

The MOVETO command uses the same acceleration/deceleration axis parameters as a
G0. It does not use the acceleration/deceleration task parameters, like a G1.

Example Program
; This program illustrates changing the target position and velocity on the fly with out deceleration

ENABLE X Y ; enable the axes

MOVETO X 10 10
MOVETO Y 20 10

; simulate a delay before target position change
G4 F1 ; dwell 1 second

MOVETO X 20 500
MOVETO Y -10 500
; simulate a delay before target position change
G4 F.5

MOVETO X 150 50 ; direction reversal
MOVETO Y 150 50
; simulate a delay before target position change
G4 F10
ENDM ; stop the axes

Extended Commands U600 CNC Programming Manual

6-66 Aerotech, Inc. Version 1.1

6.4.41. MSET Command

SYNTAX: MSET <AxisLetter> <vector>

EXAMPLE: MSET X 90 ; Set X axis to 90 electrical degrees

This command is used with brushless motors to output the specified electrical vector to
the specified axis, typically for alignment or debugging purposes. The peak current
commanded will be limited by the IAVGLIMIT axis parameter.

Be sure the IAVGLIMIT axis parameter is set to the continuous current rating of the
motor, so as not to damage it !

Redefining the ENABLE command as a Canned Function allows a subroutine to be called
whenever the drive is enabled. This is useful for initializing brushless motors without hall-
effect feedback sensors present via this command.

6.4.42. MSGxxx Commands Overview

The UNIDEX 600 Series controller allows the CNC parts program to interface with the
operator via message windows referred to as the Custom Display Window (CDW). The
MSGxxx series of commands permit the operator to show and hide the window (behind
the program tracking displays), display information to the display list window via the
MSGDISPLAY command. As well as, display messages to the user with simple button
selected responses, as well as solicit numeric data from the user, via the MSGBOX and
MSGINPUT commands, respectively. The MSGLAMP# commands allow warning or
informational text to displayed as illuminated text LAMP’s within the G code display.

Each of the MSGxxx command indicates a failure by setting the ErrCode task variable to
a non-zero value. This variable should be tested by the user after the MSGxxx commands.
All of the MSGxxx commands may contain format specifiers for their string parameters.

All of these (Callback) commands will set the ErrCode task parameter, if an error
occurs during execution.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-67

EXAMPLE PROGRAM for MSGxxx commands:

See \U600\Programs\Display.Pgm also
DVAR $WIDTH $HEIGHT
MSGDISPLAY 1 “Performing program startup” ; Type 1 message
MSGDISPLAY 2 “You can create long” “ strings by concatenating them !”

MSGCLEAR 1 ; Clear all type 1 messages from display
$WIDTH = 1
$HEIGHT = 2
MSGDISPLAY 3 “The square is: “ $WIDTH “millimeters. by “ $HEIGHT “millimeters.”
MSGCLEAR –1 ; Clear all messages from display

6.4.42.1. MSGBOX Command

SYNTAX: MSGBOX <flags><parameterList>

The <flags>define the buttons and icons displayed within the MSGBOX.

The <parameterList> is the data to display.

The MSGBOX command allows the user to display a pop-up message box to the operator
displaying a warning or informational message (Figure 6-3).

Figure 6-3. MSGBOX Pop-up Message Example

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

The flags specify the buttons and icons that will be displayed in the window to the
operator. The icons provide added clarity for the event. The icons that may be displayed
are an X (critical), ! (exclamation), ? (question mark) and an ‘i’ (information symbol), as
shown in the table below. Also, a particular button may be set as the default button, so
that if the return key is pressed that response will be selected. This is done by using the
default button defines as shown in the table below. These defines allow you to select the
first, second or third button as the default button when the return key is pressed by the
operator. The first, second and third buttons are defined by the order they are specified in
the MSGBOX button defines, in Table 6-8. For example, in the define
DF_MSGBOX_ABORTRETRYIGNORE, the ignore button would be set as the default

Extended Commands U600 CNC Programming Manual

6-68 Aerotech, Inc. Version 1.1

using the DF_DEFBUTTON3 define, because it is the third button in the define. These
buttons will also appear on the screen from left to right, once again the ‘Ignore’ button
will be the third button.

Icon #Defines Value

DF_ICON_CRITICAL 16

DF_ICON_QUESTION 32

DF_ICON_EXCLAMATION 64

DF_ICON_INFORMATION 128

Default Button #Defines Value

DF_DEFBUTTON1 (first button) 0

DF_DEFBUTTON2 (second button) 256

DF_DEFBUTTON3 (third button) 512

Table 6-8. Button Specifiers

Button #Defines Value Description

DF_MSGBOX_OKONLY 0 OK Button

DF_MSGBOXOKCANCEL 1 OK & Cancel Buttons

DF_MSGBOX_ABORTRETRYIGNORE 2 Abort, Retry & Ignore Buttons

DF_MSGBOX_YESNOCANCEL 3 Yes, No & Cancel Buttons

DF_MSGBOX_YESNO 4 Yes & No Buttons

DF_MSGBOX_RETRYCANCEL 5 Retry & Cancel Buttons

Lastly, the <parameterList> is a combination of strings and variables producing the
desired message string.

Additionally, the button pressed by the operator may be tested for as shown in the
following program fragment, using the defined return values for the buttons, shown in the
table following the example below.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-69

EXAMPLE:
$resp = MSGBOX DF_MSGBOX_YESNO + DF_ICON_QUESTION, "Are you Sleepy ?"
MSGDISPLAY "Resp = ", $resp
IF $resp == YES_BUTTON THEN ; If YES button pressed
 DISPLAY DF_LIST, "Me Too !"
ENDIF

Button Return Value Defines Value

OK_BUTTON 1

CANCEL_BUTTON 2

ABORT_BUTTON 3

RETRY_BUTTON 4

IGNORE_BUTTON 5

YES_BUTTON 6

NO_BUTTON 7

6.4.42.1.1. ParameterLists and Format Specifiers

Parameter Lists may contain string variables with format specifiers within them, the
replacement text (where applicable) must follow. The format specifier must be the first
string in the MSGDISPLAY command parameter list, after the idType. Its syntax is as
follows:

 “{specifier1,..specifier10}”

A “format specifier” may be used to format the text (strings) within callback commands.
The special sequence is replaced with the requested data. For example, “the time is #tm”
becomes “the time is 2:21 AM”. Special string sequence recognition is not case sensitive.
The #C, #D, #F, #H and #U specifiers, must be within brackets '{' '}' and the first string in
the list. The #DT and #TM specifiers may be within any string and they will be replaced,
these should not be within brackets, they should be embedded within the text string.

Extended Commands U600 CNC Programming Manual

6-70 Aerotech, Inc. Version 1.1

The following formats may be specified:

String Sequence Meaning

#C ASCII character.

#D Integer

#DT Current Date (format as specified under Regional Settings, Control Panel)

#F Floating point (optionally, may specify the number of decimals, i.e. #F3,
default is 6, maximum is 15)

#H Hexadecimal number

#TM Current Time (format as specified under Regional Settings, Control Panel)

#U Unsigned integer

Currently there is a maximum limit of 10 specifiers that may be used per MSGDISPLAY
command. This will require breaking a string into multiple strings, as shown below.

FORMAT SPECIFIER EXAMPLE:
MSGDISPLAY 1, "{#F3 #F}" "Time is #TM, Float 3 decimals and default " $var1 " " $var1
MSGDISPLAY 1, "{#D #H}" "Integer and Hex " $var1 " 0x" $var1
MSGDISPLAY 1, "{#D #U #H}" "Integer, Unsigned, and Hex " -1 " " -1 " 0x" -1

6.4.42.2. MSGCLEAR Command

SYNTAX: MSGCLEAR <idType>

The <idType> is the numerical type of the message to be cleared.

The MSGCLEAR allows messages of the specified type to be cleared from the message
display window. All messages of all types may be cleared by specifying ï1 for the idType.

EXAMPLE:

MSGDISPLAY 1 “Warning – Coolant Low” ;Warning priority

MSGDISPLAY 1 “Warning – Pressure Low” ;Warning priority

MSGDISPLAY 2 “Fault – Pressure Zero!” ;Fault priority

MSGCLEAR 1 ;Clear all priority 1 messages

MSGCLEAR 2 ;Clear all priority 2 messages

MSGCLEAR ï1 ;Clear all messages!

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-71

6.4.42.3. MSGDISPLAY Command

SYNTAX: MSGDISPLAY <idType><parameterList>

The <idType> is the numerical type of the message.

The <parameterList> is the formatted data to display.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

Each display message writes one line of text into the CDW display list window
(Figure 6-4). If the display window already contains messages, by default, the new
message is placed on a line below the previous message. A scroll bar allows the user to
browse through previous messages.

Figure 6-4. The CDW Display List Window

Additionally, each message may be assigned a numerical message type when the message
is added to the display list. This allows messages to be assigned a priority, such as fault or
warning. This allows all messages of a certain type to be cleared from the display list,
without clearing messages of another priority. The value of –1 should not be assigned as a
message type. This value is used to clear all messages from the window without regard to
the priority assigned to the message.

A “format specifier” may be used to format the text within the MSGDISPLAY
command.

EXAMPLE:

$var1 = 0h5A7B

MSGDISPLAY 1, "Default " $var1

MSGDISPLAY 1, “Warning – Coolant Low” ; Warning priority

MSGDISPLAY 1, “Warning – Pressure Low” ; Warning priority

MSGDISPLAY 2, “Fault – Pressure Zero !” ; Fault priority

MSGCLEAR 1 ; Clear warnings only

Extended Commands U600 CNC Programming Manual

6-72 Aerotech, Inc. Version 1.1

6.4.42.4. MSGHIDE Command

SYNTAX: MSGHIDE

The MSGHIDE command will hide the message display, restoring the current tasks
program tracking display. The user may also swap these at any time by selecting the MSG
or Task tabs of the program tracking display. This command hides messages of all types
regardless of their priority.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

EXAMPLE:

MSGHIDE ;Hide all messages

6.4.42.5. MSGINPUT Command

SYNTAX: MSGINPUT <Flags><parameterList>[default value]

The <Flags> define the type of data that may be input by the user and the buttons that will
be displayed, as defined in Table 6-9 and Table 6-10.

The <parameterList> is the semicolon-delimited data to be displayed. See the text below
for more information.

The [default value] is an optional value to be displayed as the default value within the
MSGINPUT window.

The MSGINPUT command will display a message box (Figure 6-5) allowing the
operator to be prompted for data.

Figure 6-5. MSGINPUT Command Message Box Display

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-73

By default, floating point numbers may be entered, if neither of the flags in Table 6-9 are
specified. The value of the OK and/or Cancel button is returned in the ErrCode task
parameter. This will be set to the value of 1 for the OK_BUTTON or 2 for the
CANCEL_BUTTON. If a default value is specified the return value will NOT be changed
if the CANCEL button is pressed.

Table 6-9. Input Window Specifiers (* = DEFAULT)

#DEFINE Hex Value Description

DF_INPUT_INTEGER 0h800000 Allow integer input only

DF_INPUT_STRING 0h400000 Allow string (text) input

Table 6-10. Button Specifiers (* = DEFAULT)

#DEFINE Hex Value Description

DF_MSGBOX_OKONLY *0 OK Button (default)

DF_MSGBOXOKCANCEL 1 OK & Cancel Buttons

The parameter list is a somewhat complex string containing the semicolon-delimited data
to be displayed. The parameter list contains two items, each ending with a semicolon. The
first item is the alphanumeric string to be displayed across the title bar of the
MSGINPUT window. This string may be any combination of strings and variables, and
must end with a semicolon (;). The second item within the string is the prompt to be
displayed within the MSGINPUT window. This string may be any combination of strings
and variables, and must end with a semicolon (;).

EXAMPLE:
MSGINPUT DF_MSGBOX_OKONLY “Title Bar;Prompt string;” $Default_value

This will display “Title Bar” in the window’s title bar and the operator will be prompted
with the message “Prompt String”. The value contained in the $Default_value variable
will be displayed in the window, allowing the operator to select “OK” for that value or to
enter a new value.

EXAMPLE:
$Title = 600
$ser_num = 3
$num = 7
$default = 4
MSGINPUT DF_MSGBOX_OKONLY “UNIDEX” $Title “Number” $ser_num “Enter the” $num
“the value;” $default

This will display “UNIDEX 600 Number 3” in the title bar of the window, and will
prompt the operator with the message “Enter the 7th value”. The value of 4 will be
initially displayed as the default value in the window.

Extended Commands U600 CNC Programming Manual

6-74 Aerotech, Inc. Version 1.1

EXAMPLE:
$strglob0 = MSGINPUT (DF_INPUT_STRING), “Guess a phrase;Enter any phrase;”, “Did you
tighten the Screw?”
MSGDISPLAY 1, $strglob0

6.4.42.6. MSGLAMP# Command

SYNTAX: MSGLAMP# <color> <parameterList>

The MSGLAMP# commands allow warning or informational text to displayed as
illuminated text LAMP’s within the G code display. There are three Lamps numbered 1-3,
from top to bottom of the G code display.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

The <color> parameter is defined by a mixture of RGB color values. You may specify an
RGB color mixture or use one of the pre-defined colors. There are eight colors pre-
defined in the \U600\Programs\AerParam.Pgm file. They are:

GRAY gray
BLACK black
RED red
BLUE blue
MAGENTA magenta
GREEN green
YELLOW yellow
CYAN cyan

The <parameterList> is the alphanumeric text to be displayed, limited by the size of the
display area within the ‘Lamp’. Approximately, 7-9 characters may be displayed within
the lamp.

EXAMPLE:
MSGLAMP1 RED “Warning !” ; Warning lamp

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-75

6.4.42.7. MSGMENU Command

SYNTAX: [variant =] MSGMENU <Flags> <id> <text>

<Flags> = DF_MENU_ADD, DF_MENU_SHOW, DF_MENU_REMOVE

DF_MENU_ADD - Adds an Item to the list, <id> is value of
Item, <text> is what is displayed.

DF_MENU_SHOW - Shows the MSGMENU box, <id> can be
DF_MSGBOX_OKCANCEL or DF_MSGBOX_OKONLY.

DF_MENU_REMOVE - Removes an item(s) from list, <id> is
item to remove (-1 to remove all).

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

The MSGMENU command displays Figure 6-6 a list of items allowing the operator to
select the appropriate option.

To display a MSGMENU, ADD the appropriate items and then use the
DF_MENU_SHOW id with the MSGMENU command.

The value of the option selected is returned in the optional return variable. The ErrCode
task parameter will contain the value of the button pressed.

Figure 6-6. MSGMENU Command Display

Extended Commands U600 CNC Programming Manual

6-76 Aerotech, Inc. Version 1.1

Example:
MSGMENU (DF_MENU_REMOVE), -1 ""
MSGMENU (DF_MENU_ADD), 1 "Cut"
MSGMENU (DF_MENU_ADD), 2, "Scribe"
MSGMENU (DF_MENU_ADD), 3, "Drill (Default)"
MSGMENU (DF_MENU_ADD), 4, "Weld"
$glob5 = MSGMENU (DF_MENU_SHOW), (DF_MSGBOX_OKCANCEL), "Select your
Process;Which Option ?;", 3
MSGDISPLAY 0, "You selected option" $glob5 " Key pressed(" ErrCode ")"

6.4.42.8. MSGSHOW Command

SYNTAX: MSGSHOW

The MSGSHOW command will display the message display, hiding the current tasks
program tracking display. These may be swapped by the user at any time by selecting the
MSG or Task tabs of the program tracking display.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

6.4.42.9. MSGTASK Command

SYNTAX: MSGTASK <TaskNumber> ""

EXAMPLE: MSGTASK 0, "" ; Clear current task fault message from task 1

The MSGTASK command will clear the task fault message from the task display area of
the U600 MMI display. The <TaskNumber> is zero-based, with 0 representing task
number 1. This will not clear the task fault itself. This may be done by setting the
TaskFault task parameter to zero for the affected task, i.e.;

TaskFault.1 = 0 ; clear task fault from task 1

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-77

6.4.43. ON command ON

SYNTAX: ON <conditionalExpression> SET <fVariant > [<OnValue>] [<OffValue>]
[<Mode>]

ON CLEAR <conditionalExpression>
ON CLEAR

<conditionalExpression> is the expression to evaluate.
<fVariant> is the variable/parameter/IO to set the value of .
<onValue> is the value to set the <fVariant> to when the
<conditionalExpression> evaluates to TRUE. This defaults to 1 if not provided.
<offValue> is the value to set the <fVariant> to when the
<conditionalExpression> evaluates to FALSE. This defaults to 0 if not provided.

Where:
<Mode> is ONSET_MODE_LEVEL, ONSET_MODE_EDGE, or

ONSET_MODE_LATCH. This defaults to ONSET_MODE_LEVEL if not specified.

The ON command defines a condition to monitor that will set the specified variant
(variable or parameter) to the <onValue>, if the defined condition is true. It can also
assign an <offValue> to the <fVariant>, when the defined condition is false. On
command monitors are active from the moment they are defined, until they are cleared for
all programs on the task (the task on which the program was running on, when it defined
the monitor). Also, the user can clear a single monitor, or clear all monitors, using the
“ON CLEAR” command as shown in the example below.

The ONSET_MODE_LEVEL <Mode> will continuously assign the <OnValue> to the
<fVariant> when the <conditionalExpression> is true, and will continuously assign the
<OffValue> to the <fVariant> when the <conditionalExpression> is false. For example,
in the ONSET_MODE_LEVEL <Mode>, if the <fVariant> is $GLOB0, then assigning to
$GLOB0 in a CNC program has no effect since its value will always be immediately
overwritten by the ON statement. In contrast, the ONSET_MODE_EDGE mode will only
assign to the <fVariant> when the value of the <conditionalExpression> changes (and
when the ON condition is first defined). The EDGE and LATCH modes differ from the
LEVEL mode, in that for the former, the <fVariant> is set only when the
<conditionalExpression> changes. In contrast, the LEVEL mode is constantly assigning
to the <fVariant.> For example, if the <fVariant> is $GLOB0 and the EDGE mode is
used, then assigning to $GLOB0 in a CNC program has no effect since its value will be
immediately overwritten by the ON statement.

The frequency at which this command evaluates the expression is variable based upon
available controller time. The time under a given situation may be examined by reading
the value of the AvgPollTimeSec global parameter.

The CNC programmer should be aware that monitors do not clear automatically
when a program finishes executing. Monitors are related to the task, not the program.
Therefore, if the user defines a monitor in a program without clearing it, the next
program run on that task will still have that monitor active. Normally, the CNC
programmer should use the ON CLEAR statement at the end of the program
defining the monitor condition.

Extended Commands U600 CNC Programming Manual

6-78 Aerotech, Inc. Version 1.1

There is a limit to the number of established monitors, determined by the task parameter
MaxMonitorData.

The old ON syntax is valid

ON($BO0==1) SET $GLOB0

and is equivalent to the following new syntax:

ON($BO0==1) SET $GLOB0 1 0 ONSET_MODE_LEVEL

EXAMPLES:
ON $GLOB0 > 5 SET $BO2 ; Sets a On monitor
ON CLEAR $GLOB0 > 5 ; Clears a On monitor
ON CLEAR ; Clears all On monitors
ON($BO0==1) SET $GLOB0 100 20 ONSET_MODE_LEVEL
ON($BO1==1) SET $GLOB1 100 20 ONSET_MODE_EDGE
ON($BO2==1) SET $GLOB2 100 20 ONSET_MODE_LATCH

ONSET_MODE_LEVEL

The ONSET_MODE_LEVEL mode of the ON command, specifies that when a condition
is TRUE the variable is set to the On Value. When it is FALSE, the variable is set to the
Off Value. The variable is always set, if changed by the user/program it is forced back to
the ON/OFF Value. This is the default mode, if none is specified.

Set <fVariant >=<OnValue> whenever <conditionalExpression> is not 0.

Set <fVariant >=<OffValue> whenever <conditionalExpression> is 0.

ONSET_MODE_EDGE

The ONSET_MODE_EDGE mode of the ON command, sets the variable to the specified
values on the rising and falling edges. On a Low-High Transition (condition goes from
FALSE to TRUE), the variable is set to the OnValue. On a High-Low Transition
(condition goes from TRUE to FALSE), the variable is set to the OffValue. The variable
is ONLY set on a transition.

Set <fVariant >=<OnValue> when <conditionalExpression> changes to a 1.

Set <fVariant >=<OffValue> when <conditionalExpression> changes to a 0.

ONSET_MODE_LATCH

The ONSET_MODE_LATCH mode of the ON command, specifies that on a Low-High
Transition (condition goes from FALSE to TRUE) the variable is set to the OnValue. The
offValue is not used. The variable is ONLY set on a transition.

Set <fVariant >=<OnValue> when <conditionalExpression> becomes 1

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-79

6.4.44. Conditional ONGOSUB Command ONGOSUB

SYNTAX:

ONGOSUB <conditional expression> FARCALL programname [[<label >]] priority
ONGOSUB CLEAR <comparatorExpression>
ONGOSUB CLEAR

 Where:

conditional expression
programname is a <s32Expression>, as limited by filenames.

label
priority is a <fExpression > evaluating to: 1, 2 or 3 which may

also be represented by PRIORITY_MEDIUM,
PRIORITY_FAULT, PRIORITY_HIGHEST,
respectively.

EXAMPLES:

ONGOSUB $GLOB0 > 5 FARCALL “Prog1.Pgm” “ERROR_LABEL” PRIORITY_FAULT
ONGOSUB CLEAR $GLOB0 > 5 ; Clears an ONGOSUB
ONGOSUB CLEAR ; Clears all ONGOSUBs

The ONGOSUB command redirects program flow if the defined condition occurs. It
operates similar to an interrupt. When an ONGOSUB is active (or defined), anytime the
specified condition occurs during program operation, execution immediately transfers via
a program call (see the FARCALL extended command) to the program location specified
in the ONGOSUB command. When an ONGOSUB command transfers program control
in this way it is said to be “triggered” or “fired.” After the program code in the
ONGOSUB routine has completed executing, program control returns to the location
from which the ONGOSUB was called from. This capability is especially useful for
handling fault or safety conditions that must be monitored continuously. However, unlike
the FARCALL command, the user cannot pass arguments to the program called in an
ONGOSUB command, global or task variables however, could be used for this purpose.
The ONGOSUB command is quite powerful, but its intricacies must be understood
completely to insure its proper use.

The frequency at which the conditional expression is evaluated is based upon available
controller time. The rate at which the conditional expression is evaluated the value of the
AvgPollTimeSec global parameter.

Extended Commands U600 CNC Programming Manual

6-80 Aerotech, Inc. Version 1.1

ONGOSUBs are active for all programs on the current task from the moment they are
defined until they are cleared. A user may clear a single or all ONGOSUBs.

The CNC programmer should be aware that ONGOSUBs do not clear automatically
when a program finishes executing. ONGOSUBs are related to the task, not the
program. Therefore, if the user defines an ONGOSUB in a program without clearing
it, the next program run on that task will have that ONGOSUB active in it. Normally,
a CNC programmer would use an ONGOSUB CLEAR at the end of a program
defining an ONGOSUB. If however a program defines an ONGOSUB, then ends,
the next program executing will suppress ONGOSUBS for the first line of the
program only. This allows the programmer to place a ONGOSUB CLEAR as the first
line in the next program.

There is a limit to the number of ONGOSUBs that may be defined, determined by the
task parameter MaxOnGosubData.

If a label within a program is only used as the target of an ONGOSUB within another
program, then the CNC program compiler will warn that the label is not used when
compiling the program. This is due to the fact that the compiler cannot see the
ONGOSUB reference in another program. The warning is benign and should be
ignored.

It is important to understand that a triggered ONGOSUB does not de-trigger the
condition causing it. Simply put, unless the programmer clears the ONGOSUB, or makes
the condition triggering the ONGOSUB false or creates an ONGOSUB of higher
priority, the same ONGOSUB immediately triggers again upon exiting the ONGOSUB
routine.

The calling condition for an ONGOSUB is expressed the same as a condition for an IF or
WHILE command, so the programmer can use any variable, parameter, binary input or
output in the conditional statement.

ONGOSUBs are defined at program run-time, therefore, they are not active until the
ONGOSUB command executes in the program. Also, the user can remove ONGOSUBs
at any time by using the CLEAR keyword or overwriting an ONGOSUB, by defining a
new ONGOSUB with the same conditional expression, but a different target. It is
important to realize that when overwriting or clearing an ONGOSUB, the user must use
the same exact conditional statement, so the controller recognizes it as the same
ONGOSUB. For example, if an ONGOSUB is defined with the conditional ($BOB > 0),
then a CLEAR with ($BOB >= 1) does not clear the ONGOSUB.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-81

The user can have multiple ONGOSUBs active at once, but never more than one
pertaining to the same condition. If the user has one or more ONGOSUBs that both
trigger at the same time, see priority’s.

If the defined condition occurs during motion, the motion will stop before the
ONGOSUB routine is called. The motion may or may not resume at the conclusion of the
ONGOSUB routine depending on how the user returns from the ONGOSUB program.

Defining an OnGosub

When defining an ONGOSUB condition, at least three parameters must be specified: the
condition to monitor (in the conditional expression), a program to call if the condition
occurs (in the program name), and a priority (in the priority argument). Also, the user can
optionally specify a parameter indicating a label within the program to begin execution at.

The Conditional Expression

A conditional expression is a <fExpression>. However, it is recommended to always
surround the conditional expression with parenthesis - in some cases this may be
necessary in order to avoid obscure and difficult to understand CNC compile errors.

Normally, a CNC programmer would use just the comparators in a conditional
expression, (see the first three examples below). However, just as in the C programming
language, the CNC programmer can use arithmetic operators also (see the fourth and fifth
examples below). Note, that when arithmetic operators are used: commands that use
conditional expressions are only concerned with whether the conditional expression
evaluates to 0.0 (called FALSE) or non-zero (called TRUE). Also, note that unlike the C
programming language, the user cannot use an assignment statement as a conditional
expression (the syntax: “$GLOBAL0=8” is not legal as a conditional expression).

EXAMPLES:
($GLOB0 > 0)
(SQRT($GLOB0 + $GLOB1) EQ $GLOB2)
(! ($GLOB1 > 0)) ; NOT may also be used for !
($GLOB1-10) ; This evaluates to FALSE only when global variable

; 1 is exactly 10.0
(ABS($GLOB1) –2) ; This evaluates to FALSE only when global variable

; 1 is exactly 2.0

Extended Commands U600 CNC Programming Manual

6-82 Aerotech, Inc. Version 1.1

The Program Name

You must provide the name of the program containing the routine to be executed when
the ONGOSUB is true. The program containing the ONGOSUB routine does not need to
be present on the UNIDEX 600 Series Controller at compile time, but must be present at
runtime (you may use the download only mode of the program automation feature to
accomplish such). If a NULL program name “” is supplied, the command will assume that
the program to jump to is the current program being compiled. In this case a label should
be supplied.

The Optional Label

If the user does not specify a label, execution will begin on the first line of the specified
program. If this label is only used as the target of the ONGOSUB from within another
CNC program, the compiler will warn that the label is not used, when compiling the
program. This is due to the fact that the compiler cannot see the ONGOSUB reference in
another program. The warning is benign and should be ignored.

The Priority

The priority provided must be a constant, and one of three values:
PRIORITY_MEDIUM, PRIORITY_FAULT, and PRIORITY_HIGHEST. Priorities are
used to sort out the relationships between different ONGOSUBS and task faults, and are
discussed under priority’s. In general, PRIORITY_MEDIUM, is the most useful, however
the user is strongly recommended to understand priorities before using ONGOSUBs.

Clearing an OnGosub

The user may remove an ONGOSUB definition at any time by preceding the conditional
expression with the ‘ONGOSUB CLEAR’ keywords, and omitting the FARCALL,
program name, program label and priority. Furthermore, the user can remove all
ONGOSUBs defined on the task by also omitting the conditional expression. The user
can also redefine an existing ONGOSUB, by defining a new ONGOSUB with the same
conditional expression, but a different target. It is important to realize, that when
overwriting or clearing an ONGOSUB, the user must use the exact same conditional
statement, so the controller recognizes it as the same ONGOSUB. For example, if an
ONGOSUB is defined with the conditional ($BOB > 0), then a CLEAR with ($BOB >=
1) does not clear the previously defined ONGOSUB.

Debugging an OnGosub

When an ONGOSUB statement is successfully executed in a program, the ONGOSUB
defined in the statement becomes active. However, if there is an error in the activation of
the ONGOSUB statement (e.g. it can’t evaluate the conditional expression, or can’t find
the ONGOSUB CNC program file or label) then it generates the task fault: “Can’t
evaluate an ONGOSUB”, and sets the TaskWarning and ErrCode task parameters to an
error code indicating the problem. You may view the Task Fault and Task Warnings via
the AerDebug.Exe utility, with the AerDebug commands: TK n (for n = the appropriate
task number), then TSKI.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-83

A common mistake with ONGOSUB’s is to not clear the condition that generated it,
before leaving the target routine. This results in the ONGOSUB immediately reoccurring
after it is exited, therefore, never returning control to the original program.

Another common mistake is not to realize that an OnGosub will not run unless the
program is running. This is defined in the Scope of an OnGosub.

Errors in an ONGOSUB

If the controller encounters an error executing an ONGOSUB, (such as a missing label or
file) it will generate a task fault; “Can’t execute an ONGOSUB”. The actual error causing
the problem (for example: “Invalid filename) will be indicated as a task warning (MMI
users should run the AerDebug.exe utility, then type TSKI to view the task warnings.

Viewing active OnGosub Statements

Once an ONGOSUB fails, an evaluation, the controller no longer attempts to evaluate it.
The user can view the ONGOSUB’s defined (and their current status), using the ZON
command within the AerDebug.exe utility (use the TK command first, to switch to the
appropriate task). The state of the ONGOSUB will be “Active” if it evaluated OK, or
“Broken” if it did not. If the description of the ONGOSUB in the ZON command is to
long to view on the display (shows ‘…’ at end of line), then use the OUTON command
before the ZON command, and examine the file that was written for the full description.
Keep in mind, that this ONGOSUB description line is in compiled text format, and its
syntax may vary slightly from that which was entered in the CNC program, specifically
with respect to the use of temporary variables to resolve complex expressions.

Scope of an OnGosub

When an ONGOSUB is active, it is active from EVERY and ANY program running on
the task, including programs called from the original program. Furthermore, the
ONGOSUB will not be deactivated when the program ends. Therefore, if the user defines
an ONGOSUB in a program without clearing it, the next program run on that task will
have that ONGOSUB active in it. Normally, a CNC programmer would use an
ONGOSUB CLEAR at the end of a program establishing an ONGOSUB, to avoid this.
The user can clear a single ONGOSUB, or clear all ONGOSUBs simultaneously.

However, an ONGOSUB will not be active when there is no program running on the task.
If a task has no purpose other than to define the ONGOSUBs, then the programmer must
place an “infinite loop” program on that task in order to keep the ONGOSUB active.

ONGOSUB conditions are not tested prior to the first line executed in a program. This
allows you clear the ONGOSUBS on the first line.

Multiple OnGosubs

The user can have multiple ONGOSUBs defined, but never more than one pertaining to
the same condition. Even so, there is a limit to the total number of ONGOSUBs that may
be defined in a task, determined by the MaxOnGosubData task parameter.

Extended Commands U600 CNC Programming Manual

6-84 Aerotech, Inc. Version 1.1

If there are multiple ONGOSUBs defined, one ONGOSUB may trigger while another is
processing (see Priority’s for details). The ONGOSUBs will behave exactly the same as
regular program calls, in that, control returns back to the first ONGOSUB after the second
one has completed. ONGOSUBs can be stacked no greater than the MaxCallStack task
parameter.

Priorities

Each ONGOSUB is assigned a priority of either PRIORITY_MEDIUM,
PRIORITY_FAULT or PRIORITY_HIGHEST. It should be emphasized that the FAULT
priority level can be used with any condition, not just faults. However, special
considerations (see Relationships to Faults) make this level a natural choice for use with
faults.

The UNIDEX 600 Series Controller maintains a value known as “current priority”, which
can be at any one of four priority levels, which are, in ascending order:
PRIORITY_NORMAL, PRIORITY_MEDIUM, PRIORITY_FAULT and
PRIORITY_HIGHEST. The current priority is normally at the lowest level:
PRIORITY_NORMAL. However, once an ONGOSUB occurs, the current priority is
reset to the ONGOSUB’s priority. Once that ONGOSUB exits, then the priority may or
may not return to its level prior to that ONGOSUB occurring (see Returning From an
OnGosub).

We must emphasize that restarting program execution, or associating a new program to
the task does not clear the current priority level. Only an ONGOSUB, M47,
FARGOTO/FARJUMP, task reset, or a firmware download changes the current priority
level.

However, if an ONGOSUB condition evaluates true, it will execute only if its priority
level is greater than the “current priority.” If the “current priority” is equal or greater than
the ONGOSUB’s priority, the ONGOSUB is deferred until such time as the current
priority falls below the ONGOSUBS priority. Therefore, an ONGOSUB of equal or
lower priority can never interrupt an executing ONGOSUB command, but a higher
priority ONGOSUB can.

EXAMPLE PROGRAM:

; Prg1.Pgm

$GLOBAL1 = $GLOBAL1+1 ; 1st line
$GLOBAL1 = $GLOBAL1-1 ; 2nd line
$GLOBAL2 = $GLOBAL1
$GLOBAL1 = 0
M02 ; 3rd line

; Prg2.Pgm

$GLOBAL1 = $GLOBAL1+10 ; 1st line
M02 ; 2nd line

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-85

Note, that the Prg2.Pgm interrupt is of higher priority.

ONGOSUB ($GLOBAL1 > 0) FARCALL “Prg1.Pgm” PRIORITY_MEDIUM
ONGOSUB ($GLOBAL1 == 2) FARCALL “Prg2.Pgm” PRIORITY_FAULT

$GLOBAL1 = 2 ; After this line is executed, PRG2 is called, which executes
; the M2 after its 1st line executed. After PRG2 finishes,
; PRG1 runs. Final value of GLOBAL2 is 12.

$GLOBAL1 = 1 ; After this line is executed, PRG1 is called, after 1st line of
; PRG1 executed PRG2 is called, after its done, we go back to
; PRG1, final value of $GLOBAL2 is 11.

If a number of ONGOSUBS are triggered (their conditions are true) simultaneously, the
highest priority ONGOSUB will be executed. If one or more ONGOSUBS exist at the
same priority, it executes the last one defined.

If a program called from an ONGOSUB command calls another subroutine or program,
then the called program/subroutine has the same level of priority as the caller. For
example, if in the above example Prg2.Pgm called another program, then like Prg2, that
program would not be interrupted by the Prg1 ONGOSUB command.

Returning from an OnGosub

It is important to understand that a triggered ONGOSUB does not de-trigger the condition
causing it. Simply put, unless the programmer clears the ONGOSUB, or makes the
condition triggering the ONGOSUB false or creates an ONGOSUB of higher priority, the
same ONGOSUB immediately triggers again upon exiting the ONGOSUB routine,
resulting in an infinite loop.

There are three ways to exit a program, and each has its own special relationship to an
ONGOSUB command:

the FARGOTO/FARJUMP command

the RETURN command

a termination M Code (M2, M47)

The FARGOTO command is the simplest to understand. When the user FARGOTOs
anywhere, including the current program, it clears the current priority (sets it to
PRIORITY_NORMAL). Therefore after the FARGOTO, ONGOSUBs of any priority
may be triggered.

The RETURN command returns to the command executed when the ONGOSUB was
triggered. If motion was running at the time the ONGOSUB was triggered, there are
special considerations (see Relationship To Motion).

Extended Commands U600 CNC Programming Manual

6-86 Aerotech, Inc. Version 1.1

An M47, like a FARGOTO, clears the current priority level, allowing any ONGOSUB
triggered to interrupt. An M2 exits the program, but does not reset the current level. For
this reason it is NOT recommended to use an M2 to exit an ONGOSUB.

Relationship to Motion

If the ONGOSUB occurs during motion, the motion stops (is decelerated smoothly)
before calling the ONGOSUB routine. After axes motion has been interrupted, you may
move any axis, whether it was involved in the interrupted move or not. The motion will
only resume (accelerate up to speed smoothly) after leaving the ONGOSUB routine, if the
ONGOSUB is exited with a RETURN statement. Exactly how the motion is resumed
depends upon the ReturnType specified, refer to the RETURN command for more
information.

Relationship to Task Faults

Normally a TaskFault will stop a program that’s running. However, if the “current
priority” level (see Priority’s) is PRIORITY_FAULT or PRIORITY_HIGHEST, a task
fault will not stop the running program. Therefore, if the program is executing an
ONGOSUB, the program will only be stopped by a task fault only if the ONGOSUB
priority is PRIORITY_MEDIUM.

Often an ONGOSUB will be defined for the purpose of taking special action when a task
fault occurs, for example: “ONGOSUB (TaskFault > 0) FARCALL “tmp.pgm”.
PRIORITY_HIGHEST”. These ONGOSUBs must have their priority level defined as
FAULT or HIGHEST, or else the ONGOSUB will stop immediately as it is triggered.

Miscellaneous

ONGOSUBS are not tested prior to the first line executed. This allows you clear the
ONGOSUBS on the first line.

Unlike the FARCALL command, the user cannot pass arguments to the program called in
an ONGOSUB, global or task variables however, could be used for this purpose.

ONGOSUB’s conditional expressions are tested prior to the execution of each line and
the interrupted line is understood to be the line that executes immediately after the
ONGOSUB test. So, if a line defines a condition (ONGOSUB watches for $BO7 > 0, and
the executed line is $BO7 = 1), then the “line after interrupted” line is actually the line,
TWO lines after the $BO7 = 1 line. Refer to the following example.

ONGOSUB ($B07>0)……
N10 $B07=1 ; fires ONGOSUB manually
N20 G1.. ; not this line, but
N30 G1 .. ; This is the line returned to

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-87

EXAMPLE PROGRAM: (RunPgm.pgm)
ONGOSUB ($BI2 EQ 1) FARCALL SHIELD_SAFETY2 PRIORITY_FAULT
:DOSTUFF
; suppose shield comes up, this sets BI2=1, we jump to SHIELD_SAFETY2
; do more stuff
M2

;**
: SHIELD_SAFETY2
$BO2 = 1 ; closes shield, setting BI2 to 0
FARGOTO “RunPgm.Pgm” “SETPOINT”

;********************** SET POINT *****************************
:SETPOINT
DISPLAY 0 "Going_to_Set_Point" 2
M5 ; turn off spindle
G1 X0 Y0
GOTO DOSTUFF

Extended Commands U600 CNC Programming Manual

6-88 Aerotech, Inc. Version 1.1

6.4.45. Oscillate Move Command OSC

SYNTAX: OSCILLATE <axisLetter> <distance> <feedrate>

Where: distance and feedrate are <fExpressions>

EXAMPLE: OSCILLATE X 50. 300.
distance — is the distance of the moves (sign is initial direction).
feedrate — is the velocity in user units/minute.

The asynchronous motion command causes the specified axis to oscillate (cycle) the
specified distance at the specified velocity. The sign (+ or -) of the distance determines
the initial direction of the move and is in user units. The feedrate is in user units per
minute. To halt the axis, specify a zero feedrate or distance in subsequent uses of this
command, or execute an ENDM on that axis.

Each portion of the oscillation moves is a separate INDEX move. In other words, an
“OSC X position velocity” is equivalent to:

While FOREVER
INDEX X p v

INDEX X –p v
EndWhile

Each portion of the oscillation move (INDEX in the example above) command will have
its own acceleration and deceleration, as determined by the acceleration/deceleration axis
parameters (ACCEL, DECEL, ACCELMODE/DECELMODE, ACCELRATE,
DECELRATE). Thus the shape of the oscillation profile is affected by these parameters.

The OSCILLATE command uses the same acceleration/deceleration axis parameters as a
G0 command. It does not use the acceleration/deceleration task parameters, like a G1
command.

The move is asynchronous and program execution resumes immediately after the move
starts. The controller does not wait for the move to end before continuing on to the next
command.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-89

6.4.46. POPMODES Command

SYNTAX: POPMODES

EXAMPLE: POPMODES ; Restore modal G code states

Restores the setting of the Mode1 task parameter to the value before the PUSHMODES
command was executed.

Executing this command prior to a PUSHMODES command will generate a "Empty
Stack" fault.

6.4.47. PUSHMODES Command

SYNTAX: PUSHMODES

EXAMPLE: PUSHMODES ; Save modal G code states

Stores the setting of the Mode1 task parameter. This is typically used to store the modal G
code states prior to calling a subroutine, so they can be restored upon exiting. However, it
can be used at any time, along with POPMODES, to store and restore modal G code
states.

EXAMPLE:
G70 G90
PUSHMODES
CLS routine
POPMODES
X10 ; at this point we are in G70 and G90 mode
...
M2

DFS routine
G71 G91

ENDDFS

Extended Commands U600 CNC Programming Manual

6-90 Aerotech, Inc. Version 1.1

6.4.48. Initialize Touch Probe PROBE

SYNTAX: PROBE (channelNum) (activeLevel) (array[x])

Where:
channelNum is the virtual input bit number (-1 for high speed position latch)
activeLevel is the active level (1/0) (0 for high speed position latch)
array[x] is an array variable to store the positions

The UNIDEX 600 Series controller provides support for digital touch probe measuring. It
allows the user to determine the location of a part in space.

The PROBE command initializes the touch probe and the G51 command activates probe
monitoring. When the probe input is detected, the controller returns the current position
of each axis in the specified variables. This allows the probe to begin moving toward the
users part and have the probe stop when it contacts the part. The program may then use
the position information returned to determine the physical location of the part in space.

When the probe input is detected, the controller will generate a Probe fault. You may
disable, halt, or abort the motion, based on the setting of each axis fault masks:
DISABLEMASK, HALTMASK, AUXMASK, ABORTMASK, INTMASK, and
BRAKEMASK.

Be sure to set the Probe Fault bit in the FAULTMASK axis parameter to enable the
detection of the touch probe, then set the bit in the appropriate mask parameter
(DISABLEMASK, HALTMASK, AUXMASK, ABORTMASK, INTMASK and
BRAKEMASK) for the action to occur on this fault.

Once activating a probe cycle, the controller actively monitors the designated input
channel until the probe input is detected. When a probe touch occurs, the cycle is
complete. To initiate a probe measuring cycle again, execute another G51 command.

The parameters for the probe command include the virtual I/O number, active level and
array variable to store the axes positions. The first parameter, channel number, refers to
the virtual input channel through which the probe input will be monitored. To specify the
high speed position latch input on the UNIDEX 600 controller, enter -1 as the channel
number. The high speed position latch input is a physical hardware trigger to a gate array,
so, the trigger input must physically connect to the high speed position latch input on each
card (UNIDEX 600, 4EN-PC #1, 4EN-PC #2, 4EN-PC #3) having axes whose position
must be latched. The second parameter, active level, permits the user to specify the
polarity of the probe in use. The high speed position latch hardware input is always active
low, specifying an active high level will have no effect. The final parameter specifies the
first location of an array into which the position information is stored. The size of the
array should correspond to the number of axes specified by the G51 command multiplied
by the number of probe hits to be taken before the execution of the next PROBE
command. Each probe hit increments a pointer into the array by the number of axes being
collected. The execution of the PROBE command resets the pointer to the beginning of
the array.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-91

The G51 command may be repeated after executing the PROBE command to determine
various points on the users part, see example program below.

EXAMPLE PROGRAM:

DVAR $Posit[16] ; Define $Posit program variable array to store positions
;
; Be sure the array is declared large enough to hold all of the points sampled !
;
PROBE 10 0 $Posit[0] ; Initialize touch probe input on virtual input bit 10.

; The probe being used is active low (0). Position information
; will be placed into the $Posit array, starting at $Posit[0]

G51 X Y ; Enable touch probe for X and Y
G1 X5.0 Y3.0 F30 ; Start motion toward probe
... ; $Posit[0] = X POS, $Posit[1] = Y POS

G51 X Y Z ; Enable touch probe for X, Y and Z
G1 X5.0 Y3.0 F30. ; Start motion toward probe
... ; $Posit[2] = X POS, $Posit[3] = Y POS, $Posit[4] = Z POS

PROBE 10 0 $Posit[0] ; Over-write data in the $Posit array
G51 Z ; Enable touch probe for Z only
G1 X5.0 Y3.0 F30. ; Start motion toward probe
... ; $Posit[0] = Z POS

6.4.49. PROGRAMDOWNLOADFILE Command

SYNTAX: PROGRAMDOWNLOADFILE <program name>

EXAMPLE: PROGRAMDOWNLOADFILE "C:\U600\Programs\Cycle.pgm"

Where: <program name> is the name of the program to download, which may
contain format specifiers.

This command will read the program from the disk drive, compile the program if it needs
compiled, and download it to the controller. If the CNC program that is downloaded
contains a compiler error, a task fault will be generated.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

Extended Commands U600 CNC Programming Manual

6-92 Aerotech, Inc. Version 1.1

6.4.50. PROGRAMEXECUTE Command

SYNTAX:PROGRAMEXECUTE <task index> <program name> [label] [mode]

EXAMPLE:PROGRAMEXECUTE 0, "C:\U600\Programs\Cycle.pgm", "StepCycle", 1

Where: <task index> is the task to change programs on.

<program name> is the name of the new program to execute.

[label] is an optional label to begin execution at.

[mode] is the optional execution mode of the program;

TASKEXEC_DEFAULT -1 ; Execute default Mode (Run/Step)

TASKEXEC_RUN_INTO 0 ; Run into subroutines

TASKEXEC_STEP_INTO 1 ; Step into subroutines

TASKEXEC_STEP_OVER 2 ; Step over subroutines

TASKEXEC_RUN_OVER 3 ; Run over subroutines

This command will execute a program that is present on the controller. If a program is
currently executing on the task, the program will be stopped. This command will execute
a subroutine if the label parameter is a valid subroutine name. The mode of execution can
also be specified.

Executing the PROGRAMEXECUTE command with the task index parameter equal
to the current task will result in an error.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

6.4.51. PROGRAMEXECUTEFILE Command

SYNTAX: PROGRAMEXECUTEFILE <task index> <program name>

EXAMPLE: PROGRAMEXECUTEFILE 0 "C:\U600\Programs\Cycle.pgm"

Where: <task index> is the task to change programs on.

<program name> is the name of the new program to execute, which
may contain format specifiers.

This command will read the program from the disk drive and execute the program on the
task specified. If a program is currently executing on the task, the current program will be
stopped.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-93

Executing the PROGRAMEXECUTEFILE command with the task index parameter
equal to the current task will result in an error.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

6.4.52. PROGRAMTASKRESET Command

SYNTAX:PROGRAMTASKRESET <task index> <abort> <reset> <deassociate>
[<programToAssociate>]

EXAMPLE:PROGRAMTASKRESET 0, 1, 1, 1

Where: <task index> is the task to change programs on.

<abort> is a flag to determine if the task should be aborted.

 <reset> is a flag to determine if the task should be reset.

<deassociate> is a flag to determine if the task should be deassociated.

<programToAssociate> is an optional parameter that may specify a
CNC program to associate with the task.

This command will abort, reset, and/or deassociate the current program on the specified
task, based on the flag parameters.

The last (optional) parameter may be used to associate a new CNC program. This
parameter is a string and format specifiers may be used. The CNC program specified by
the last parameter will be associated to the task after the task is reset.

Executing the PROGRAMTASKRESET command with the task index parameter
equal to the current task will result in an error.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

Extended Commands U600 CNC Programming Manual

6-94 Aerotech, Inc. Version 1.1

6.4.53. PROGRAMUNLOAD Command

SYNTAX: PROGRAMUNLOAD <programHandle>

Where: <programHandle> is the name of the CNC program (no path specifier),
which may contain format specifiers.

The ErrCode Task parameter will contain an Error Code if the command fails or you may
test the return code as shown below in the example. This command may not be used to
unload the CNC program it is executing from, you must do this from another task.

You may need to execute PROGRAMTASKTRESET before unloading a CNC
program.

All Callback commands will set the ErrCode task parameter, if an error occurs during
execution.

EXAMPLE PROGRAM:
PROGRAMUNLOAD "TEST.PGM" ; unloads test.pgm
if ErrCode != 0 then

; ...
end if

; or (user variable)

$ErrCode = PROGRAMUNLOAD "TEST.PGM"
if $ErrCode != 0 then

; ...
end if

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-95

6.4.54. PSO Card Based Commands

The PSO Card based commands execute on the optional PSO-PC card, typically
configuring the card to generate a laser firing pulse. There are four types of PSOx
commands:

PSOD – Distance, to specify the vectorial Distance between laser firing pulses (see
Section 6.4.55 on page 6-97).

PSOF – Firing, enable/Disable the laser firing pulse and specify the axes to track (see
Section 6.4.56 on page 6-100).

PSOP – Pulse, define the laser firing pulse (see Section 6.4.57. on page 6-102).

PSOS – Scaling, define/enable/disable scaling of axes (see Section 6.4.58. on page 6-
105).

PSOT – Set/Clear analog/digital outputs or specify analog outputs to track axes position
or velocity (see Section 6.4.59 on page 6-106).

All PSOx commands will wait until all axes in a previous motion command are “in-
position”. This implies that all PSOx commands will wait, even if an axis is out of
position due to instability of the axis or the INPOSLIMIT axis parameter set too low.

Extended Commands U600 CNC Programming Manual

6-96 Aerotech, Inc. Version 1.1

6.4.54.1. Configuring the PSO-PC Card to Fire a Laser

There are four basic steps to (typically) configuring the PSO-PC card to generate a laser
firing pulse. There are however, many other ways.

1. Define the Laser firing pulse with one of the PSOP commands.

2. Specify the distance between laser pulses with the PSOD 0 command.

3. Scale the machine resolutions of the axes with the PSOS command, if
required.

4. Define and enable the axes to track with the PSOF 3 command.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-97

6.4.55. Position Synchronized Output Firing Distance Entry PSOD

SYNTAX: PSOD mode <iExpression>

The PSOD command specifies the number of machine steps to travel before output
synchronization occurs on the laser output (LOUT1). Distances may be entered
individually or sequentially through the use of variables. This command is only used in
conjunction with the “PSOF 3” and PSOP commands.

6.4.55.1. Mode Argument for PSOD Command

SYNTAX: PSOD mode <iExpression >

The mode argument defines the ways to use the PSOD command. Currently, only the
PSOD 0 command is supported.

6.4.55.2. Pulse Output at an Incremental Distance PSOD 0

SYNTAX: PSOD 0 <iExpression>

PSOD 0 indicates that the pulse output occurs at a fixed incremental distance, provided
by iExpression, and must be less than 223 machine steps. Refer to Table 6-11. An example
illustrating this is shown in Figure 6-7. The distance is specified in machine steps.

EXAMPLE:
PSOP 0, 105 ;Single pulse 10.5 ms wide
PSOD 0, 5 ;Generate a pulse every 5 machine steps

User Specified PulseTrain (LOUT1)

Position

VLaser

Constant Incremental Distance

Position counters
 initialized by PSOF

0

Figure 6-7. Trigger Pulse Fired at Constant Increments

Extended Commands U600 CNC Programming Manual

6-98 Aerotech, Inc. Version 1.1

Table 6-11. Distance Calculations for Multiple Axes Using the PSOD Command

Number
of Axes

Distance Calculation Diagram

1 Distance = Counter1 X

Counter 1

2 Distance = Counter1 + Counter22 2

X
Counter 1

Counter 2

Y

Distance

3 Distance = Counter1 + Counter2 + Counter32 2 2

Counter 1Counter 2

Distance

X

Y

Z

Counter 3

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-99

6.4.55.3. Fire Equidistantly PSOD 7

SYNTAX: PSOD 7, <#pulses> < distance>

The PSOD 7 command will generate the specified number of firing pulses across the
<distance> specified. The specified <distance> does not have to be a multiple of the
<#pulses> specified. The fractional step count error will be accumulated during the
tracking, causing no cumulative error. There will however be a machine count variation in
the firing pulses, if the <#pulses> cannot be evenly divided into the <distance> specified.
This allows the firing pulses to be evenly distributed (approximately) across the specified
distance, without constantly changing the firing pulse distance to compensate for the
desired non-integer firing distance.

At the completion of the specified <distance> the command will begin generating firing
pulses again until disabled by the PSOF, 0 command. This command is most useful when
generating firing pulses around the circumference of a rotary part.

EXAMPLE:
PSOP 0, 105 ; Single Pulse, 10.5 ms wide
PSOD,7,432,4000 ; Generate 432 firing pulses
PSOF, 3, 1, 2 ; Enable firing from Ch’s 1 and 2
… ; Generate motion
PSOF, 0 ; Disable firing

6.4.55.4. Offset Firing Pulse PSOD 8

SYNTAX: PSOD 8, <MachineSteps>

The PSOD 8 command will suspend tracking, or ignore the specified number of
<MachineSteps>, causing the next firing pulse to be offset that distance.

EXAMPLE:
PSOD 8, 2000 ; Offset firing sequence by 2000 steps

Extended Commands U600 CNC Programming Manual

6-100 Aerotech, Inc. Version 1.1

6.4.56 Enable/Disable Position Synchronized Output Firing PSOF

The PSOF command activates or deactivates the tracking features and pulse train output
on LOUT1.

SYNTAX: PSOF mode, iExpression

6.4.56.1. Mode Arguments for PSOF

The mode argument defines one of four possible ways to use the PSOF command. The
arguments for the mode command can range in value from 0 to 3 and the following
sections describe their meanings.

6.4.56.2. Disable Laser Output Pulse PSOF 0

SYNTAX: PSOF 0

“PSOF 0” disables the output firing pulse train and tracking features. This is the default
mode on power up of the PSO-PC.

6.4.56.3. Laser Output Fires Continuously PSOF1

SYNTAX: PSOF 1

 “PSOF 1” activates the output firing pulse train (as established by the PSOP command).
The pulse train continues until it is disabled by the “PSOF 0” command. No position
tracking occurs in this mode.

“PSOP 0” and “PSOP 4” may not be used with the “PSOF 1” command.

EXAMPLE:

PSOP 1, 50, 105, 75 ;Single Pulse:
;5ms lead, 10.5ms wide,
;7.5ms tail

PSOF 1 ;Fires the Pulse continuously

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-101

6.4.56.4. Fire Laser a Specified Number of Times PSOF 2

SYNTAX: PSOF 2 <iExpression>

 “PSOF 2” activates the output firing pulse train (as established by the PSOP command)
for number, number of times. If iExpression=0, then the output firing pulse train will not
be activated until the previous output firing pulse train is complete. No position tracking
occurs in this mode.

“PSOP 0” and “PSOP 4” may not be used with the “PSOF 2” command.

EXAMPLE:

PSOP 1, 50, 105, 75 ;Single Pulse:
;5ms lead, 10.5ms wide
;7.5ms tail

PSOF 2, 525 ;Fires that Pulse 525 times

6.4.56.5 Laser Output Synchronized with Position PSOF 3

SYNTAX: PSOF 3, <ch_number>[[,<ch_number>]][[,<ch_number>]]

“PSOF 3” activates the output firing pulse train (as established by the PSOP command).

The ch_number specifies up to three PSO-PC encoder channels to track. The user may
specify up to three of the four channels. The channels are normally assigned to the first
four axes in your system, with those axes named X, Y, Z and U by default.

The position counter will lock on to the motion of the axes attached to the specified
channels. Up to three axes may be simultaneously tracked. Output firing occurs at
distances established by the PSOD 0 command.

EXAMPLE:

PSOP 1, 50, 105, 75 ;Single Pulse:
;5ms lead, 10.5ms wide,
;7.5ms tail

PSOD 0, 5 ;Pulse every 5 Machine Steps
PSOF 3, 1, 2 ;Track PSO-PC channels 1 & 2

Extended Commands U600 CNC Programming Manual

6-102 Aerotech, Inc. Version 1.1

6.4.57. Position Synchronized Output Pulse Configuration PSOP

The PSOP command configures the pulse output train.

SYNTAX: PSOP mode, { width

 | lead, width, trail

 | lead, width, trail, ramp, gap }

6.4.57.1. Mode Arguments for PSOP

The mode argument defines one of four possible ways to use the PSOP command. The
arguments for the mode command can range in value from 0 through 2 and 4. The
following sections describe their meaning.

6.4.57.2. Simple Single Pulse PSOP 0

SYNTAX: PSOP 0, width

“PSOP 0” defines the width w of the firing pulse to be generated, in tenths of
milliseconds. This pulse is generated each time the defined firing condition occurs. Refer
to Figure 6-8 and the PSOD command.

Single Pulse Output (LOUT1)

Time

VLaser

Pulse Width in
1

10
— of milliseconds

Figure 6-8. Single Pulse Generated on Firing Condition

EXAMPLE:

PSOP 0, 105 ;Single Pulse: 10.5 ms wide
PSOD 0, 5 ;Generate Pulse every 5 Machine Steps
PSOF 3, 1, 2 ;Track PSO-PC channels 1 & 2

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-103

6.4.57.3. Single Pulse with Lead, Width and Trail PSOP 1

SYNTAX: PSOP 1, lead, width, trail

“PSOP 1” defines a single pulse to be generated, on the trigger condition, with definable
pulse lead (lead), pulse width (width) and pulse trail (trail) characteristics. The pulse lead,
width and trail arguments are specified in tenths of milliseconds and must be integer
values. The pulse lead time is a delay after the firing trigger occurs before generating the
pulse. The pulse trail time is a delay after the pulse is generated before tracking of the
axes begins again.

EXAMPLE:

PSOP 1, 50, 105, 75 ;Single Pulse:
;5ms lead, 10.5ms wide
;7.5ms trail

PSOD 0, 53 ;Fire Pulse every 53 Machine Steps
PSOF 3, 1, 2 ;Track PSO-PC channels 1 & 2

Single Pulse Output (LOUT1)

Time

VLaser

Pulse Width

1
10
— of milliseconds

Pulse Trail

Pulse Lead

Trigger

Lead, Width, & Trail are in

Figure 6-9. Single Pulse Output with Lead, Width, and Trail

6.4.57.4. Level based Laser Control

To toggle the laser firing output, on and off (level control), use the following syntax:

EXAMPLE:
PSOP, 1, 0, 10, 0 ; Define lead, trail as 0
PSOF, 1 ; Set firing output on
;
; Do something
;
PSOF, 0 ; Set firing output off

Extended Commands U600 CNC Programming Manual

6-104 Aerotech, Inc. Version 1.1

6.4.57.5. Simple One-shot Pulse PSOP 4

SYNTAX: PSOP 4, width

The PSOP 4 command defines the width of a single pulse to be generated, on the trigger
condition, in microseconds (with a minimum value of 1 microsecond). Refer to the figure
below.

EXAMPLE:
PSOP 4, 25 ; Single One-Shot Pulse 25 µs wide
PSOD 0, 7 ; Fire Pulse every 7 Machine Steps
PSOF 3, 1, 2 ; Track PSO-PC channels 1 & 2

Single One-ShotPulse Output(LOUT1)

Time

VLaser

Pulse Width in microseconds

Pulse Width≥ 1µs

Figure 6-10. Single One-shot Pulse Output

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-105

6.4.58. Position Synchronized Output Scaling PSOS

The PSOS command allows the scaling of axes that have different machine resolutions
allowing the PSO-PC card to track/fire on a true vectorial distance, velocity, etc.

SYNTAX: PSOS mode

Where mode is 0 through 2.

6.4.58.1. Disabling Scaling PSOS 0

SYNTAX: PSOS 0

“PSOS 0” disables scaling for all axes. This is the default mode on power up of the PSO-
PC. This command does not undefine the scaling defined with the PSOS 2 command. The
PSOS 1 command may be executed to enable scaling after the PSOS 0 command.

6.4.58.2. Enable Scaling PSOS 1

SYNTAX: PSOS 1

“PSOS 1” enables scaling for all axes, previously defined with the PSOS 2 command.

6.4.58.3. Define PSO Axes Scaling PSOS 2

SYNTAX: PSOS 2, channel, scaling

“PSOS 2” defines scaling for an axis, allowing axes which have different machine
resolutions to be tracked by the PSO-PC as true vectorial distances, velocities, etc. The
channel parameter specifies the input channel of the PSO-PC that you wish to scale. The
scaling parameter, specifies the desired scaling of the specified axis, to match it to the
resolution of the other axes. This scaling parameter may be a fraction that is less than or
greater than zero. Scaling may be disabled with the PSOS 0 command and later re-
enabled with the PSOS 1 command without redefining the axes scaling.

EXAMPLE:
PSOS, 2, 1, 1.5 ; SET CHANNEL 1 SCALING TO 1.5
PSOS, 2, 2, 0.5 ; SET CHANNEL 2 SCALING TO 0.5
PSOS, 1 ; ENABLE SCALING
PSOT, 4, 0, 0, 10, 100 ; ANALOG OUTPUT CHANNEL 0 PROPORTIONAL TO

; VELOCITY. 0 TO 10 VOLTS OUTPUT OVER
 ; 0 TO 100 CNTS/MSEC INPUT VELOCITY
PSOF, 3, 1, 2 ; TRACK ENCODER INPUT CHANNELS 1 AND 2
.
.
PSOS, 0 ; DISABLE SCALING (ANALOG OUTPUT STILL ACTIVE)
.
.
PSOS, 1 ; RE-ENABLE SCALING

Extended Commands U600 CNC Programming Manual

6-106 Aerotech, Inc. Version 1.1

6.4.59 Digital/Analog Output Command PSOT

The PSOT command is used to set/clear digital output lines on the PSO-PC card (OUT0
through OUT15) or set the voltage (-10.0 V to 10.0 V) of the analog outputs (AOUT1
and AOUT2).

SYNTAX:

PSOT mode{ bit#, state ... | states | dac#, voltage ... | dac#, v0, vmax, velocity

 | dac#, v0, vmax, position }

6.4.59.1. MODE Argument for PSOT

The mode argument defines one of four possible configurations (0, 2, 4, or 6) for setting
digital and analog outputs. The following sections describe those modes.

6.4.59.2. Set Individual Output State PSOT 0

SYNTAX: PSOT 0, bit#, state

The PSOT 0 command sets individual digital output lines (argument bit#, specifying
OUT0 through OUT15) to either a logic high (state=1) or logic low signal (state=0).

The “bit#” argument specifies an individual bit number that corresponds to one of the 16
digital outputs (0=OUT0, 1=OUT1, ..., 15=OUT15) on the PSO-PC card.

The “state” argument specifies the logic state (0=low, 1=high) to set. Multiple groups of
bit numbers and states may be specified.

Programming an output bit to a logical “1” state results in the corresponding pin
being pulled to ground. A programmed “0” state results in a high impedance state on
the corresponding output pin. During reset, all outputs are in the high impedance
state. All input lines are pulled to +5V by a 10KΩ resistor.

EXAMPLE:

PSOT 0, 4, 1 ;Turns output #4 ON
PSOT 0, 4, 0 ;Turns output #4 OFF
PSOT 0, 3,0, 13,1, 4,1, 10,0 ;Spaces added for clarity

;Turns output #3 OFF,
;turns output #13 ON,
;turns output #4 ON,
;turns output #10 OFF,
;simultaneously.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-107

6.4.59.3. Set Analog Outputs to Discrete Values PSOT 2

SYNTAX: PSOT 2, dac#, voltage

The “PSOT 2” command sets the output voltage of DAC0 (dac#=0) which is AOUT1 or
DAC1 which is AOUT2 (dac#=1) to a constant value. Refer to Figure 6-11. DAC output
voltages can range from -10.0 V to 10.0 V and have a resolution of 0.3 mV.

The “dac#” argument specifies which of the two digital-to-analog converters (0 or 1) to
set. The value 0 corresponds to AOUT1 and the value 1 corresponds to AOUT 2. This
argument is only used by commands “PSOT 2”, “PSOT 4” and “PSOT 6”.

The “voltage” argument defines the desired output voltage (-10.0 to 10.0 volts) of the
specified DAC channel (0 or 1). Both DAC channels and their respective voltages may be
specified in the same PSOT command (e.g., PSOT 2, 0, 5, 1, -5).

The analog outputs (AOUT1 and AOUT2) are via 16 bit D/A’s.

Note: Commas are required as delimiters between parameters, particularly when
negative numbers are used, to prevent mathematical operations from occurring!

EXAMPLE:
PSOT 2, 0, 5.25 ;AOUT1 is 5.25 VDC
PSOT 2, 1, -3.70 ;AOUT2 is -3.70 VDC

Analog Signal (AOUT1 or AOUT2)

Time

(Voltage between ±10VDC can be specified to the D/A)

Vuser

Figure 6-11. User-Specified Analog Voltage

WARNING

Extended Commands U600 CNC Programming Manual

6-108 Aerotech, Inc. Version 1.1

6.4.59.4. Velocity Ramping PSOT 4

SYNTAX: PSOT 4, dac#, vzero, vmax, velocity

The PSOT 4 command sets the output voltage of DAC0 (dac#=0) which is AOUT1 or
DAC1 which is AOUT2 (dac#=1) to a value that is proportional to the velocity (velocity
ramping). Refer to the figure below. DAC output voltages can range from a
programmable minimum value (at zero velocity) specified by argument vzero to a
maximum voltage (at the target velocity, velocity) specified by argument vmax.

The “dac#” argument specifies which of the two digital-to-analog converters (0 or 1) the
user wants to set. The value 0 corresponds to AOUT1 and the value 1 corresponds to
AOUT 2.

The “vzero” argument specifies the zero-state analog output voltage for proportional
output modes “PSOT 4” (vzero is the analog output voltage at zero velocity) and “PSOT
6” (vzero is the analog output voltage at the initial position). This argument can range
from -10.0 volts to 10.0 volts.

The “vmax” argument specifies the maximum analog output voltage at target velocity,
velocity, in mode “PSOT 4” or at the target position, position, in mode “PSOT 6”. This
argument can range from -10.0 volts to 10.0 volts.

The target velocity is specified in machine steps per millisecond.

Keep in mind that the PSO-PC card operates in units of Machine Step/ms. A
Machine Step is an integer. Likewise, the velocity is the same. Therefore, a 16
Machine Step/ms maximum velocity with a minimum voltage of 0 VDC and a
maximum of 5 VDC causes the voltage to step at 0.3125 VDC increments ([5 -
0]/16= 0.3125), even though a 16 bit D/A can step at 0.0003 VDC increments. So,
moving at 1 Machine Step/ms is +0.3125 VDC; moving at 2 Machine Steps/ms is
+0.6250 VDC, etc. For that reason, expect some variation at slow velocities and at
velocities that are not integers when converted to Machine Steps/ms. This includes
Velocity Errors when traveling at a constant speed. So, for this example the amount
of variation will be the incremental voltage, which is 0.3125 VDC.

Velocity Tracking is activated by the “PSOF 3” command. Keep in mind, for the
PSOF command to execute, it must have a pulse defined with the PSOP, or PSOD
commands. The user must define a pulse even though it will not be generated.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-109

Comma’s are required as delimiters between parameters, particularly when negative
numbers are used to prevent mathematical operations from occurring !

EXAMPLE:

PSOP 0, 105 ; Single Pulse 10.5 ms ide
PSOD 0, 5 ; That Pulse every 5 Machine Steps
PSOT 4, 0, 0, 5, 16 ; Velocity Tracking

; using D/A #0 = AOUT1
; min voltage = 0 VDC
; max voltage = +5 VDC
; max velocity = 16 Mach Steps/ms

PSOF 3, 1, 2 ; Track PSO-PC channels 1 & 2

Analog Signal representing Velocity (AOUT1 or AOUT2)

Time
(Max Voltage representing Max Velocity, & Min
Voltage can be specified)

Velmax Vmax=

Velzero Vmin= 0

Velocity Tracking
 initialized by PSOF

Figure 6-12. Velocity Ramping

6.4.59.5. Position Ramping PSOT 6

SYNTAX: PSOT 6, dac#, vzero, vmax, position

The PSOT 6 command sets the output voltage of DAC0 (dac#=0) which is AOUT1 or
DAC1 which is AOUT2 (dac#=1) to a value that is proportional to the position (position
ramping). Refer to Figure 6-13. DAC output voltages can range from a programmable
minimum value (at initial position) specified by argument vzero to a maximum voltage (at
target position, position) specified by argument vmax.

The “dac#” argument specifies which of the two digital-to-analog converters (0 or 1) to
set. The value 0 corresponds to AOUT1 and the value 1 corresponds to AOUT 2.

The “vzero” argument specifies the zero-state analog output voltage for proportional
output modes “PSOT 4” (vzero is the analog output voltage at zero velocity) and “PSOT
6” (variable is the analog output voltage at the initial position). This argument can range
from -10.0 volts to 10.0 volts.

WARNING

Extended Commands U600 CNC Programming Manual

6-110 Aerotech, Inc. Version 1.1

The “vmax” argument specifies the maximum analog output voltage at target velocity,
velocity, in mode “PSOT 4” or at the target position, position, in mode “PSOT 6”. This
argument can range from -10.0 volts to 10.0 volts.

Keep in mind that the PSO-PC card operates in units of Machine Steps for position.
A Machine Step is an integer. Therefore, a 250 Machine Step target position with a
minimum voltage of –1 VDC and a maximum of 8 VDC causes the voltage to step at
0.0360 VDC increments ([8 - (-1)]/250 = 0.0360), even though a 16 bit D/A can step
at 0.0003 VDC increments. So, when at 1 Machine Step beyond the current position
the voltage is –0.9640 VDC; when at 2 Machine Steps the voltage is –0.9280 VDC,
etc. For this reason, expect some variation in the analog signal while stepping at
0.0360 VDC increments. For our example, the amount of variation will be the
incremental voltage, which is 0.0360 VDC.

Position Ramping is activated by the “PSOF 3” command. Keep in mind, for the
PSOF command to work it must have a pulse defined with the PSOP or PSOD
commands. The user must define a pulse even though it will not be generated.

Commas are required as delimiters between parameters, particularly when negative
numbers are used, to prevent mathematical operations from occurring!

EXAMPLE:
PSOP 0, 105 ; Single Pulse 10.5 ms wide
PSOD 0, 5 ; That Pulse every 5 Machine Steps
PSOT 6, 0, -1, 8, 250 ; Position Ramping -

; using D/A #0 = AOUT1
; min voltage = -1 VDC
; max voltage = +8 VDC
; Target Position = 250 Machine Steps

PSOF 3, 1, 2 ; Track PSO-PC channels 1 & 2

WARNING

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-111

Analog Signal representing Position(AOUT1 or AOUT2)

Position

(Max Voltage representing Max Position, & Min Voltage can be specified)

Vmax

Vmin

Current Position Target Position

Position Ramping
initialized by PSOF

Figure 6-13. Position Ramping

6.4.59.6. PSOT 4 velocity Argument

The “velocity” argument defines the target velocity (in machine steps per millisecond) at
which the analog output defined by dac# will be at its maximum (as defined by vmax).
Velocity can range from –2 x 10E23 to 2 x (10E23 –1) machine steps per millisecond.
This argument is used only in mode “PSOT 4”.

6.4.59.7. PSOT 6 position Argument

The “position” argument defines the target position (in machine steps) at which the
analog output defined in dac# will be at its maximum (as defined by vmax). Position can
range from –2 x 10E23 to 2 x (10E23 –1) machine steps. This argument is used only in
mode “PSOT 6”.

Extended Commands U600 CNC Programming Manual

6-112 Aerotech, Inc. Version 1.1

6.4.60. Release Command

SYNTAX: RELEASE <axisMask>

EXAMPLE: RELEASE X Y

This command is the opposite of the CAPTURE command. It releases control of the axis
from the current task. Refer to the CAPTURE command for more details.

6.4.61. Repeat Loop REPEAT / RPT

SYNTAX: REPEAT <fExpression>

 <CNCBlock>

 ...

<CNCBlock>

ENDREPEAT

It is often desirable to have a group of CNC program blocks execute unconditionally a
fixed number of times. A repeat loop is a simple way of performing such a task.

The RPT/REPEAT command designates that the group of program blocks executes
multiple times. A parameter used in conjunction with this command specifies the number
of times to execute this block.

Also, the user may nest RPT/REPEAT loops within each other (see the following
example), limited only by available memory.

EXAMPLE PROGRAMS:

DVAR $MYVAR ; Define a variable named MYVAR
RPT 10 ; The following program block will be ;repeated 10 times
 G1 G9 X0.1 F100.
ENDRPT ; End of the repeat loop

$MYVAR = 5 ; Repeat counts may also be specified in variables
RPT $MYVAR ; Enclosed blocks will be executed 5 times
 RPT 2 ; This inner loop will be executed twice each time the

 ; outer loop is executed
 G1 G9 X-0.05 F100.
 ENDRPT ; End of the inner repeat loop
ENDRPT ; End of the outer repeat loop

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-113

6.4.62. Canned Function Overview

Canned functions provide more flexibility on how and when to call a subroutine. There
are many uses of Canned Functions. Each of these uses is demonstrated in examples 1
through 4 below, respectively. However, regardless of how you would like to use canned
functions, it is suggested that you review Calling a subroutine form another task first.
Canned functions are defined like regular subroutines, with the DFS command. However,
canned functions must also be “set” or “registered” via the SETCANNEDFUNCTION
command. Calling, or Executing, canned functions. The Canned Function (subroutine)
must be present on the UNIDEX 600 controller. It may be Auto Downloaded via the
Program Automation Page. Canned functions will not execute if a task fault is present.
You must use the ONGOSUB command, to customize actions during fault conditions.

6.4.62.1. SETCANNEDFUNCTION Command

SYNTAX: SETCANNEDFUNCTION <id> <programHandle>, <programLabel>,
<flags>

This command defines a canned function, which may be called (or executed), several
ways. Canned Functions may be disabled (see section 6.4.62.2.). See the Canned Function
Overview for more information (see section 6.4.62.).

Where:

id - is the number of the canned function. Valid canned function id's may
range from 1 to the upper limit defined by the NumCannedFunctions task
parameter.

programHandle - is the name of the program containing the subroutine that
the canned function calls. The current CNC program may be specified by
indicating a null file handle, i.e.; “”, however, doing so will imply the
current CNC program at the time the Canned Function is executed (see
CannedFunctionID task parameter or EXECCANNEDFUNCTION)

programLabel - is the label of the subroutine that the canned function calls.

flags - are used to specify how the canned function operates.

0 - runs the Canned Cycle as an autonomous operation. Does not
interrupt motion. (Default)

1 - follow current user mode. That is Auto Mode/Step Mode (Step
Over/Step Into). This is used for debugging. The CNC program lines
within the canned function (subroutine) will be displayed as they are
executed.

2 - allows canned cycle to interrupt motion and return from the canned
function via the canned functions specified return type.

4 - executes canned cycle at the end of a motion block.

Extended Commands U600 CNC Programming Manual

6-114 Aerotech, Inc. Version 1.1

6.4.62.2. Disabling Canned Functions

Canned Functions are disabled by specifying a NULL <program handle> and a NULL
<program label>. The flags specified when disabling the canned function are
insignificant.

SETCANNEDFUNCTION 1 “”, “”, 1

6.4.62.2.1. Calling a Subroutine from another Task

Download the following CNC program (CanSubs.Pgm), via the Program Automation
page of the UNIDEX 600 MMI, selecting the Download Only option.
M02

DFS CANNED1
MSGDISPLAY 0, "In Canned Cycle 1..."
IF $P.DEFINED THEN

MSGDISPLAY 5, "Waiting..."
G4 F$P
MSGCLEAR 5, ""

ENDIF
$BO1 = 1
MSGDISPLAY 0, "Ending Canned Cycle 1..."

ENDDFS

DFS CANNED2
MSGDISPLAY 0, "In Canned Cycle 2..."
$BO2 = 1
MSGDISPLAY 0, "Ending Canned Cycle 2..."

ENDDFS

Execute the following CNC program to register the subroutine, possibly via the Program
Automation page of the UNIDEX 600 MMI, selecting the Auto Run Silent option.

SETCANNEDFUNCTION 1 "CANSUBS.PGM", "CANNED1", 0
SETCANNEDFUNCTION 2 "CANSUBS.PGM", "CANNED2", 0

Canned functions can now be executed with the following commands:

EXECCANNEDFUNCTION 1, 0 ; Execute Canned Function 1 (no parameters)
EXECCANNEDFUNCTION 1, 0, P5 ; Execute Canned Function 1 (with a parameter)

Or from any task as follows:

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-115

CannedFunctionID.1 = 1 ; Execute Canned Function 1
CannedFunctionID.1 = 2 ; Execute Canned Function 2

6.4.62.2.2. Calling Subroutines from the Manual I/O keys

Define and register your canned functions as described in Calling a subroutine form
another task.

See the \U600\Ini\ManIO#.Ini file [Page2.Key11] for further documentation.

6.4.62.2.3. An easier to use ONGOSUB, or monitor Command

Here we define a CNC program to warn the user when a grinding wheel has worn too
small.

Download the Following Program to define the subroutine (ToolStuff.Pgm). This may be
done via the Program Automation page of the UNIDEX 600 MMI, selecting Download
Only.

M02 ; This line avoids a compiler warning.

DFS TOOLCHANGE
; GLOBAL0 holds the wheel diameter

MSGDISPLAY 0, "Warning: tool diameter too small:” $GLOBAL0, “Change tool."
MSGDISPLAY 0, “Install new tool, enter tool diameter”
$GLOBAL0 = MSGINPUT “Wheel Diameter;Enter new wheel diameter (inches);"

ENDDFS

Execute the following program to register the CNC subroutine. This maybe done via the
Program Automation page of the UNIDEX 600 MMI, selecting Auto Run Silent.

SETCANNEDFUNCTION 10 "ToolStuff.Pgm", "TOOLCHANGE", 0
ON($GLOBAL0 < .5) SET CannedFunctionID 10 0 ONSET_MODE_LATCH
M02

When $GLOBAL0 changes to less than .5, the ON monitor automatically sets the
CannedFunctionID task parameter to 10, calling the TOOLCHANGE subroutine.

In this example, it is important that the TOOLCHANGE subroutine set $GLOBAL0
to a value higher than .5, to prevent the routine from executing continuously.

Extended Commands U600 CNC Programming Manual

6-116 Aerotech, Inc. Version 1.1

6.4.62.2.4. Implementing Canned Cycles

Download the following Program to define the subroutine (Drill.Pgm) that will be called
as a canned function. This may be done with the Program Automation page of the
UNIDEX 600 MMI, Selecting the Download Only option.

M02 ; This line avoids a compiler warning.

DFS DRILL
M2000 ; Activates output to lower the drill

ENDDFS

Execute the following CNC command to register the canned function (this can be done
automatically, by putting the command line in a CNC program, and adding it to the
Program Automation Page)

SETCANNEDFUNCTION 10 "DRILL.PGM", "DRILL",
AER_CANNEDFUNCTION_ENDOFBLOCK

The DRILL subroutine is then called automatically, at the end of every G0 / G1 / G2 / G3
motion command.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-117

6.4.63. Return from Subroutine/Program RETURN

SYNTAX: RETURN

The RETURN statement is used to exit subroutines or programs. After a RETURN is
executed, program execution will continue on the line immediately after the CLS, or
FARCALL command that was executed. If you execute a RETURN in a “top-level”
program (one which was not called from another program) the program will stop
execution (as if an M02 were executed). If a task reaches the end of a CNC program
without executing a return or other program control execution code, such as an M02, it
will implicitly execute a return type of RETURNTYPE_NULL.

6.4.63.1. RETURN from an ONGOSUB Command

SYNTAX: RETURN [[<fExpression >]]

RETURNTYPE_NULL, = 0 (Default)

RETURNTYPE_START, = 1

RETURNTYPE_INTERRUPT, = 2

RETURNTYPE_END, = 3

RETURNTYPE_OFFSET, = 4

The RETURN statement is used to exit subroutines (or programs), or in this topic, to
return from an ONGOSUB command. Since ONGOSUB’s occur asynchronous to
program execution (they can occur in the middle of a CNC line, during a command) the
task must know how to handle the line it is executing when it is interrupted. It can either
re-execute the line or skip it. The user must specify which is desired for their application.
A further complication arises when the interrupted line was executing synchronous
motion, such as a G1 command. The controller may be instructed to perform motion
adjustments in order to complete the move properly. Typically, return type
RETURNTYPE_INTERRUPT or RETURNTYPE_OFFSET would be used to maintain
programmed position when a move is interrupted. After axes motion has been interrupted,
you may move the axes via any valid Immediate Mode command, within the ONGOSUB
subroutine.

Extended Commands U600 CNC Programming Manual

6-118 Aerotech, Inc. Version 1.1

0 – RETURNTYPE_NULL

This return type will not return the axes to the absolute positions that they were
at, at the time when the interrupt occurred. Any synchronous motion command
that was interrupted will not be completed upon return from the interrupt.
Program execution will continue on the CNC line after the CNC line that was
interrupted.

1 – RETURNTYPE_START

 This return type will return the axes to the absolute positions that they were at, at
the start of the interrupted line. Program execution will continue on the CNC line
that was interrupted, restarting any interrupted synchronous CNC command from
the start of the line.

2 – RETURNTYPE_INTERRUPT (used by the Jog and Return Mode)

This return type will return the axes to the absolute positions that they were at,
when the interrupt occurred. The interrupted move will be completed upon
return from the interrupt and program execution will continue on the CNC line
after the interrupted line.

3 – RETURNTYPE_END

The interrupted line is aborted. This return type will return the axes to the
absolute positions that they would have been at, at the end of the interrupted line,
had it not been interrupted. Program execution will continue on the CNC line
after the interrupted line.

4 – RETURNTYPE_OFFSET (used by the Jog and Offset Mode)

This return type will not return the axes to the absolute positions that they were
at, at the time when the interrupt occurred. The interrupted move will be
completed upon return from the interrupt and program execution will continue
on the CNC line after the interrupted line.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-119

6.4.64. SetParm Command

SYNTAX: SETPARM <AxisList> <AxisParameter > <Value>

This command changes the current value of any axis parameter. All axis parameters may
be modified, similarly as they may be modified sing the AerDebug utility program.

 The <AxisList> parameter is a list of axes to which this command applies. This list may
contain any number of axes, but all axes mentioned must be associated with the current
task.

The <AxisParameter> parameter to this command is the name of the axis parameter
whose value is to be modified.

The <Value> parameter is the value to which this parameter is to be set. This value is an
integer and may be specified using a numeric literal, a variable or a simple expression.
This value will be applied to all axes specified.

EXAMPLE:

SETPARM X IMAX 10000 ;; Set IMAX parameter for the X axis to 10000
SETPARM X Y Z DRIVE VAR1 ;; Set DRIVE parameter for the X, Y and Z axes equal to
VAR1

6.4.65. Slew Command SLEW

SYNTAX: SLEW port <x_axis> <speed> [<y_axis> <speed>]

Where;
<port> - is either the serial port (U630\631) or the joystick port (UNIDEX 600\650).
<x_axis> - is the axis to be commanded by the x axis movement of the slew device.
<speed> - is the maximum speed in user units/minute.
<y_axis> - is the optional second axis to be moved by the y axis motion of the slew

device.

The SLEW command allows the user to position the axes manually through the use of a
RS-232 serial trackball or mouse (UNIDEX 630\631) or an analog joystick (UNIDEX
600\650). On the UNIDEX 630\631, the port number represents the serial port on the
controller board that connects to the trackball and/or mouse (0-3).

The mouse and trackball must be connected to the desired serial port on the
(UNIDEX 630\631) controller board when its firmware loads (on power up).

On the UNIDEX 600, the port refers to the connection of the joystick. Port 0 refers to the
joystick port on the UNIDEX 600 board, 1 to 3 refers to the joystick port on the optional
encoder expansion boards 1 to 3. In all cases, the joystick connects to the joystick
connector on the DR500, BB500 or BB501 that interfaces the user to the UNIDEX 600
or encoder expansion board.

Extended Commands U600 CNC Programming Manual

6-120 Aerotech, Inc. Version 1.1

Speed is specified in user units/minute.

The speed is the maximum velocity commanded by the input device in user units. The
x_axis parameter is the axis designator for the axis commanded by the movement of the X
axis of the slew device. The y_axis parameter, optionally specifies the axis designator
commanded by the movement of the Y axis of the slew device. The SLEW command
does not complete (will continue executing) until the slew mode is disabled. To disable
the slew mode, press the fire button on the joystick, or press the left button on the mouse
or trackball.

EXAMPLE PROGRAM:

SLEW 0 X 1000 Y 500 ; Activates the joystick through the UNIDEX 600 card

6.4.66. Start Motion (STRM) Command STRM

SYNTAX: STRM <axisLetter> <direction> < speed>

axisLetter is the axis

direction is the free run direction (1 is positive, -1 negative)

speed is the speed to free run at in user units per minute (or rpm for
rotational axes)

This asynchronous motion command begins an axis free running, in the specified
direction. The axis will begin motion with no target, stopping only when an ENDM
command is executed.

The move is an asynchronous motion command so program execution resumes
immediately after the move starts without waiting for the move to end.

The STRM command uses the same acceleration and deceleration axis parameters as the
G0 command. It does not use the accel/decel task parameters, like the G1 command.

Use the ENDM command to end motion on an axis that executed a STRM command.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-121

6.4.67. String Functions

SYNTAX : <stringExpression> is <stringFunction> (arguments)

EXAMPLES:
$GLOB0 = STRLEN($STRGLOB0) ; find the length of a string

$GLOB0 = STRCMP($STRGLOB0, “end”, 0) ; compare the length of two strings

$GLOB0 = STRFIND($STRGLOB0, ”=”, 0) ; look for a string within another string

$GLOB0 = STRCHAR($STRGLOB0, ”1234567890”) ; look for a set of char's within another string

$GLOB0 = STRTODBL($STRGLOB0, 4) ; convert a string to a number

$GLOB0 = STRTOASCII($STRGLOB0) ; find the ASCII value of a character

$STRGLOB0 = STRMID($STRGLOB0, 1, 5) ; remove a string from a larger string

$STRGLOB0 = STRUPR($STRGLOB0) ; convert a string to upper-case

$STRGLOB0 = STRLWR($STRGLOB0) ; convert a string to lower-case

$STRGLOB0 = DBLTOSTR($GLOB0, 4) ; convert a number to a string

6.4.67.1. STRLEN

SYNTAX : <fVariable> = STRLEN(<stringExpression>)

EXAMPLE: $GLOB0 = STRLEN($STRGLOB0) ; find the length of a string

Returns the length (number of characters) in the string as a numeric value. The function
takes one argument (and that argument must be a string).

For example:

STRLEN(“cat”) is 3

Extended Commands U600 CNC Programming Manual

6-122 Aerotech, Inc. Version 1.1

6.4.67.2. STRCMP

SYNTAX : <fVariable> = STRCMP(<stringExpression>, <stringExpression>,
<bCaseSensitive>)

EXAMPLE: $GLOB0 = STRCMP($STRGLOB0, “end”, 0) ;compare the length of
two strings

Compares two strings and returns 0 if the strings are the same and 1 if the strings differ.
This function takes three arguments. The first two arguments are the two strings to
compare. The third argument indicates case sensitivity. If the third argument is 0, the
comparison is case insensitive (when comparison is case insensitive, “DOG” is the same
as “dog”). If the third argument is 1, the comparison is case sensitive.

For example:

STRCMP(“cat”, “Cat”, 1) is 1

STRCMP(“cat”, ”Cat”, 0) is 0

6.4.67.3. STRFIND

SYNTAX: <fVariable> = STRFIND(<stringExpression>, <stringExpression>,
<bCaseSensitive>)

EXAMPLE: $GLOB0 = STRFIND($STRGLOB0, ”=”, 0) ;looks for a string
within another string

Looks for occurrence of the second string inside the first string. If it does not find the
second string in the first string, it returns –1. If the second string is found in the first string
it returns the index of the character in the first string, where the first occurrence of the
second string is found. Indices returned are zero based. The function requires three
arguments. The first argument is the string to look in and the second argument is the
string to look for. If the second string is null (equal to “”) then STRFIND always returns
0. The third argument indicates case sensitivity. A zero in the third argument means the
comparison is case insensitive. If the third argument is 1, the comparison is case
sensitive.

For example:

STRFIND(“alazydogjumped”, “DOG”,0) will return the value 5.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-123

6.4.67.4. STRCHAR

SYNTAX : <fVariable> = STRCHAR(<stringExpression>, <stringExpression>)

EXAMPLE: $GLOB0 = STRCHAR($STRGLOB0, ”1234567890”) ; look
for a set of char's within another string

Looks inside the first string for occurrence of any character in the second string. If the
function does not find any character of the second string in the first string, it returns –1. If
characters from the second string are found in the first string, it returns the index of the
character in the first string, where the first occurrence of a character in the second string is
found. Indices returned are zero based and the comparison is always case sensitive. This
function takes two arguments. The first argument is the string to look in, and the second
argument is the string to look for.

For example:

STRCHAR(“POWER=5.67”, “0123456789.-+”) will return the value 6.

6.4.67.5. STRTODBL

SYNTAX : <fVariable> = STRTODBL(<stringExpression>,)

EXAMPLE: $GLOB0 = STRTODBL($STRGLOB0) ;convert a string to a number

Converts a string to a double value. If the string is not a valid double, it returns 0. Trailing
invalid characters are ignored.

For example:

STRTODBL(“7.889inches”) is 7.889

STRTODBL(“length=7.889”) is 0.

Extended Commands U600 CNC Programming Manual

6-124 Aerotech, Inc. Version 1.1

6.4.67.6. STRTOASCII

SYNTAX : <fVariable> = STRFIND(<stringExpression>, <index>)

EXAMPLE: $GLOB0 = STRFIND($STRGLOB0, 0) ; find the ASCII value of a
character

Converts a given character of a string to its ASCII value. This function takes two
arguments. The first argument is the string, and the second argument is the index of the
character to translate (index is zero based). If the index specifies a character outside of the
string, 0 is returned.

For example:

STRTOASCII(“cat”, 1) is 97

STRTOASCII(“cat”, 44) is 0.

6.4.67.7. STRUPR

SYNTAX : <fVariable> = STRFIND(<stringExpression>)

EXAMPLE: $STRGLOB0 = STRFIND($STRGLOB0) ; convert a string to upper-
case

Converts the passed string to upper case. Non alphabetic characters are ignored. The
function takes one argument (the string to be converted).

For example:

STRUPR(“5.6 Inches”) is “5.6 INCHES”.

6.4.67.8. STRLWR

SYNTAX : <fVariable> = STRLWR(<stringExpression>)

EXAMPLE: $STRGLOB0 = STRLWR($STRGLOB0) ; convert a string to lower-
case

Converts the passed string to lower case. This expression takes one argument (the string
to be converted). Non alphabetic characters are ignored.

For example:

STRLWR(“5.6 InchesPerSecond”) is “5.6 inchespersecond”.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-125

6.4.67.9. DBLTOSTR

SYNTAX : <fVariable> = DBLTOSTR(<stringExpression>, <NumDigits>)

EXAMPLE: $STRGLOB0 = DBLTOSTR($GLOB0, 4) ;convert a number to a
string

Converts a numeric value into an ASCII string. This function takes two arguments. The
first argument is the value to convert, and the second argument is the number of digits
past the decimal point to convert. If the second argument is too large or less than zero, it
will fill out the size of the string with trailing zeros, if necessary.

For example:

DBLTOSTR(12.3456789, 3) is “12.345”

DBLTOSTR(12.3456789, 0) is “12”

DBLTOSTR(12.3456789, -1) is “12.34567890000000000000000000000”

6.4.67.10. STRMID

SYNTAX : <fVariable> = STRMID(<stringExpression>, <StartChar>, <EndChar>)

EXAMPLE: $STRGLOB0 = STRMID($STRGLOB0, 1, 5) ; remove a string
from a larger string

Selects a sub-string of characters from a string. This expression takes three arguments.
The first argument is the string to select from. The second and third arguments are the
starting and ending indices (the smaller of the two will be the starting index). Indices are
zero based, and the string will include the characters specified by the two indices. If one
index is –1, it will select characters all the way to the end of the string.

For example:

STRMID(“POW=7.6 watts, 4, 6) is “7.6”

STRMID(“POW=7.6 watts, 4, -1) is “7.6 watts”

STRMID(“POW=7.6 watts, 4, 4) is “7”

Extended Commands U600 CNC Programming Manual

6-126 Aerotech, Inc. Version 1.1

6.4.68. SYNC Command SYNC

SYNTAX: SYNC <axisLetter><table><mode>

Where:

axisLetter is the slave axis.

table is the table number (table numbers can range from 0 to 99).

mode is the SYNC mode (see below).

See the Camming Overview (see section 6.4.35.) and the Camming Performance Tip
(section 6.4.35.3) for more information.

This statement synchronizes a master axis to a slave. The synchronization will not occur
until all motion (if any is in progress) is complete on the slave. The user is cautioned that
electronic camming behavior can be complex and the following description along with the
description of the related parameters must be fully understood to produce the desired
results.

After synchronizing a slave to a master axis, the slave’s motion follows the master axis'
motion. After unsynchronizing a slave, its motion no longer follows the master axis. The
user must provide a synchronization mode as a parameter in the SYNC statement. The
SYNC mode may be 0, 1, 2, or 3. SYNC mode 0 removes synchronization of a slave axis
from a cam table. SYNC modes 1, 2, and 3 synchronize the axis to the cam table. To
select the correct mode for synchronizing, the programmer must be cognizant of a number
of complex details of the electronic camming process described below.

Mode 1 enables relative synchronization and mode 2 enables absolute synchronization.
The incremental mode does not check the position of the slave relative to the master when
the cam table is engaged. All output motion occurs relative to the current position. The
absolute mode forces the slave to move to the position indicated by the current master
position by generating an “infeed” command. Using the following as an example; suppose
that at the moment of synchronization, the master is currently at position "m" and the
slave at position "x". Furthermore, suppose that the table specifies that at master position
"m" the slave should be at position "s". Mode 2 directs the slave to move from position
"x" to position "s" as the table synchronizes. This infeed move in mode 2 initiates
simultaneously with the initialization of the electronic camming move. Therefore,
immediately after synchronizing the axes, the total motion is the sum of the motion
directed by electronic camming and the motion directed by SYNC mode 2. At a later
point in time, after the infeed move has completed, the total motion will be determined by
the electronic camming. The infeed move is performed at the speed specified by the
SYNCSPEED axis parameter and is subject to normal acceleration and deceleration as
dictated by the ACCEL and DECEL axis parameters. SYNC mode 1 does not cause any
automatic movement of the slave. Instead, the table is interpreted, so that at master
position "m", the slave is assumed to be at the correct position "s". All of the following
points in the table will be offset accordingly (x-s is effectively added to all slave position
table coordinates).

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-127

The program can synchronize to a new cam table while the slave is already synchronized
to a current table (without removing synchronization in between with SYNC mode 0’s).
However, SYNC modes 1 and 2 provide no protection for any jump in slave commanded
positions that may be caused by the potentially large difference in values between the two
tables. The tables switch instantaneously without any automatic acceleration or
deceleration.

Do not remove synchronization from an axis in motion, since the slave will stop abruptly.
Insure that the slave axis is not moving, such as via the ENDM command.

SYNC mode 3 is velocity mode. In SYNC mode 3 the slave values are interpreted as axis
velocities, not axis positions. The table controls slave velocity based on a master axis
position. The axis velocity is specified in Units/Millisecond.

All cam tables are circular in operation. When the master axis exceeds the last point in the
table, synchronization will resume with the first cam table point. Therefore it is important
to note that if the master axis position is ever to exceed the bounds of the cam table when
synchronization is active then the first and last slave positions in the table should be
identical. This will prevent abrupt changes in the slave output position as the table
transitions from the last to first point (or first to last depending on the direction of the
master).

Care should be taken when engaging cam table motion as it’s incorrect application
may result in abrupt changes in slave velocity. Make sure that the master axis and
slave axes are stationary when engaging or disengaging cam table motion, or use
MAXCAMACCEL (SYNC mode 3 only).

If you repeatedly sync and desync, you may have to set MASTERPOS before
syncing to avoid 32-bit overruns and result jerks of the slave.

EXAMPLE:
SYNC Y 3 2 ; Synchronizes the table
SYNC Y 3 0 ; Desynchronizes the table

WARNING

WARNING

Extended Commands U600 CNC Programming Manual

6-128 Aerotech, Inc. Version 1.1

The following axis parameters are relevant to camming (master/slave motion):

MAXCAMACCEL - Mode 3 offers acceleration/deceleration protection used when
synchronizing axes on the fly (without desynchronizing in between with SYNC mode
0’s). If this parameter is non-zero, the slave axis will not exceed this acceleration while
electronically camming. Modes 1 and 2 do not use this parameter. To deactivate this
feature, set the parameter value to “0”.

CAMOFFSET - This parameter is added to the master position before doing the table
lookup. For example, if the table covers master positions from 0 to 360 degrees the actual
master position is 2 degrees and CAMOFFSET is 3 degrees, then 5 degrees will be used
as the master position to index into the table. Note that this parameter is set in encoder
counts and not user units.

MASTERLEN - Specified for rotary master axes. Setting the MASTERLEN equal to the
number of counts per revolution of the master axis will modulo the MASTERPOS. As an
example, if the MASTERLEN parameter is set to 1000, then the masterpositon would
have the following sequence of positions: …997,998,999,0,1…. Note that the slave
entries at the beginning of the table and the end of the table should be continuous to avoid
abrupt changes in the slave output position.

EXAMPLE:
SYNC Y 3 2 ; Synchronizes the table
SYNC Y 3 0 ; Desynchronizes the table

6.4.69. Track Command

SYNTAX: TRACK~<axisLetter>~<mstr_start>~<mstr_dist>~<slave_dist>
Where :

The mstr and slave parameters are all fExpressions.

<axisLetter> specifies the slave axis that is to begin tracking its master’s
position. The axis must not be moving when this command is executed
(the master axis can be moving however). The master axis provided in a
prior CFGMASTER command.

<mstr_start> specifies the starting master position ‘Dm0’ to begin tracking.

<mstr_dist> specifies the distance ‘∆Dm’ over which the master will travel as
the slave accelerates from zero speed to the desired tracking ratio.

<slave_dist> specifies the distance ‘∆Ds’ over which the slave will travel as it
accelerates from zero speed to the desired tracking ratio.

See the Camming Performance Tip (section 6.4.35.3) for more information.

The master starting position, and the two distances must be entered in user units.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-129

This command establishes a master-slave relationship, where the slave axis is accelerated
from zero speed up to a speed which is a user defined fixed ratio of the master axis speed.
The time at which the acceleration begins, the final speed of the slave, and the fixed speed
ratio between master and slave are all determined by the parameters provided in the
command, as described below.

Tracking motion of the slave axis begins after the master axis begins moving, (via any
other motion), and arrives at the position specified in the <mstr_start> parameter.
Tracking is active until an ENDM is executed on the slave axis (See the example below).

Before using this command, the user must have used the CFGMASTER command to
establish the identity of the master axis. The master axis must be traveling at a constant
speed throughout the acceleration, however, if at a later time the master axis changes
speed, the slave will adjust so as to maintain the specified ratio. The time at which the
acceleration begins, the final speed of the slave, and the fixed ratio are all determined by
the parameters specified in the TRACK command, as described below.

Prior to using this command, the master must be moving at a non-zero constant velocity
(Vm), and the slave must stationary. Upon execution of this command, the slave begins
accelerating from zero speed when the master position has exceeded Dm0. If the master
position has already exceeded Dm0 then acceleration will begin immediately. The
acceleration will produce a linearly increasing velocity. At some later time (T1), the slave
will reach its desired speed (Vs), and it will stop accelerating. During this time interval
∆T (from T0 to T1) the master will travel a distance Dm1-Dm0 (or ∆Dp), and the slave
will travel a distance of ∆Ds.

The diagram below (Figure 6-14) portrays positive values for ∆Dm and ∆Ds. However,
either parameter may be negative. The sign of these parameters indicates the sign of the
slave velocity relative to the master’s velocity. A negative sign indicates a negative
velocity for the respective axis.

Figure 6-14. Track Command D Diagram

Extended Commands U600 CNC Programming Manual

6-130 Aerotech, Inc. Version 1.1

The user might want to specify the TRACK command with different values for ∆Dm and
∆Ds. For example, the user might want to specify (Vs/Vm) (the gear ratio) directly. The
user needs to only start with Dm and any two of the other four initial parameters: Vs, ∆T,
∆Dm and ∆Ds. The equations below (derived using the simple law: V=∫D dt): can be of
assistance in deriving the proper parameters to use with the TRACK command:

∆Ds = ∆T * Vm

∆Dm = 2 * ∆Ds * (Vm / Vs) = 2 * ∆T * Vm * (Vm / Vs)

Note, that in the above equations either Vm, or the speed ratio (Vm/Vs) must be known
beforehand. In the common simple case where Vm = Vs (master and slave travel at same
speed) , the above simplifies to :

∆Ds = ∆T * Vm

∆Dm = 2 * ∆Ds

While the track command is active, the user may also “add” additional motion on top of
the slave with other asynchronous motion commands (such as STRM, and INDEX)
independently of the track relationship. The TRACK command is terminated by an
ENDM command, after which the slave will decelerate to zero speed.

EXAMPLE PROGRAM:
HOME X Y ; Start X and Y at zero
CFGMASTER X 0 Y ; X is slave, Y is master
TRACK X 1.0 2 4 ; Slave starts when master is 1, slave at full speed

; when master=1+2=3, and slave=4
G90 F1000
G1 Y5 ; Starts master moving, slave will track.
ENDM X ; end tracking

G1 Y5 ; Starts master moving, slave does not track.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-131

6.4.70. VOLCOMP Command

SYNTAX: VOLCOMP <TempScale>, <PresScale>, <HumidScale>,
<TempOffset>, <PresOffset>, <HumidOffset>, <Temp>, <Pressure>,
<Humidity>

EXAMPLE: $var = VOLCOMP 12.004, 72.536, 1.0, 15.222, 535.74, 0, -1, 0, 50
; calculate the correction factor

This command will calculate the correction factor for the wavelength of light based upon
the actual temperature, pressure and humidity. It is typically used with Aerotech’s
LZR1100 environmental compensator. This correction factor may then be used via the
G151 command to update the scaling of the axes.

The <TempScale>, <PresScale>, <HumidScale>, <TempOffset>, <PresOffset> and
<HumidOffset> parameters are used in the calculation as follows:

Pressure Value = Sensor Value * PresScale + PresOffset

The <Temp>, <Pressure>, and <Humidity> may be specified as an analog input to read
the sensor from, or a value may be specified. Temperature is in units of degree Celsius.
Pressure is in absolute millimeters of mercury. Humidity is specified as a percentage, 50
represents 50%.

Analog inputs are specified as values 0 through –15, where –2 would represent analog
input 2. See the first half of the example below.

Values may be directly specified, as a value greater than zero, through the maximum
range. If a value is specified directly, the scale and offset parameters (6 total) must be
specified as 1. They will not be used in the calculation. See the second half of the
example below.

EXAMPLE PROGRAM:
DVAR $CorFactr

; Specify :
; Temp. Scale=12.004, Pressure Scale=72.536, Humidity Scale=1.0
; Temp. Offset= 15.222, Pressure Offset= 535.74, Humidity Offset= 0
; Read temperature from analog input 1, pressure from input 0 and humidity equals 50(%)
$CorFactr = VOLCOMP 12.004, 72.536, 1.0, 15.222, 535.74, 0, -1, 0, 50
G151 F(1 / $CorFactr) ; update scaling
G1 X3.5 F100. ; move

; Specify temperature as 20C, pressure as 29.8 mm Hg and humidity as 60(%)
$CorFactr = VOLCOMP 1, 1, 1, 1, 1, 1, 20, 29.8, 60 ; calculate the correction factor
G151 F(1 / $CorFactr) ; update scaling
G1 X3.5 F100. ; move

Extended Commands U600 CNC Programming Manual

6-132 Aerotech, Inc. Version 1.1

6.4.71. Wait Command WAIT

SYNTAX: WAIT <conditionalExpression > < iExpression > <TimeToWait>
[< Flag >]

The WAIT command will wait until the specified condition is true, or the command times
out. The program will pause execution on that line, until either the condition is true, or it
times out. If the command times out, the controller generates a TaskFault. The
“<iExpression >” is the time-out parameter in milliseconds. If the time specified as –1,
then the command will never time out, it will wait indefinitely. The conditional expression
is evaluated at the rate indicated by the AvgPollTimeSec task parameter. However, if a
non-zero value is specified for the <Flag> parameter, then instead of generating a
TaskFault when timing out, it instead sets the ErrCode task parameter to the hexadecimal
value E0082006.

EXAMPLES:

WAIT ($GLOBAL1 == 1) 10000 ; A TaskFault is generated on a time out
WAIT ($GLOBAL1 == 1) $GLOB0 1 ; The ErrCode task parameter is set on a time
out
WAIT ($GLOBAL1 == 1) -1 ; Will wait forever (never time out)

6.4.72. Conditional Looping WHILE / WHL

SYNTAX: WHILE <conditionalExpression> [[DO]]

<CNCBlock>
 ...

<CNCBlock>
ENDWHILE

The ellipses ‘…’ above indicate a series of zero or more CNC program lines.

It is often desirable to have a group of program blocks execute repeatedly until a specific
condition becomes true. The WHILE-ENDWHILE construct, provided by the UNIDEX
600 Series controller’s programming language permits easy implementation of such a
function. The “DO” keyword is optional.

When the WHILE command is executed, the controller evaluates the specified
conditional expression. If the conditional expression evaluates true (not equal to 0.0), the
following CNC program blocks up to the ENDWHILE command are executed. The
conditional expression is then re-evaluated. This repeats until the condition is false
(zero). At this time, program flow proceeds to the command immediately following the
ENDWHILE keyword. If the condition evaluates false on the first evaluation, the CNC
program lines within the WHILE construct will never be executed.

U600 CNC Programming Manual Extended Commands

Version 1.1 Aerotech, Inc. 6-133

EXAMPLE PROGRAM:

DVAR $OUTER $INNER ; Define variables OUTER and INNER
$OUTER = 0 ; Initialize outer loop counter to zero
WHILE $OUTER LT 10 DO ; Execute this loop until the variable OUTER ;is greater

; than or equal to 10
 $OUTER = $OUTER + 1 ; Increment the loop counter
ENDWHILE ; End of while construct
WHILE $OUTER GE 1 DO ; Execute this loop until the variable OUTER ;is less

; than or equal to 0
 $INNER = 0 ; Initialize inner loop counter
 WHILE $INNER LE 5 DO ; While loops can be nested inside of one ;another
 $INNER = $INNER + 1

 IF $INNER EQ 5 THEN ; Even conditional commands can be in while loops
 $OUTER = $OUTER -1

 ENDIF

 ENDWHILE

ENDWHILE

∇ ∇ ∇

Extended Commands U600 CNC Programming Manual

6-134 Aerotech, Inc. Version 1.1

U600 CNC Programming Manual Custom Commands

Version 1.1 Aerotech, Inc. 7-1

CHAPTER 7: CUSTOM COMMANDS

In This Section: Page
• Introduction...7-1
• Custom M-codes (Using Defines) ...7-2
• Custom G-codes (Using Calls)..7-3
• Custom Commands (Using Callback Commands)7-5

7.1. Introduction

This chapter describes ways the programmer can customize or extend the Aerotech
UNIDEX 600 Series controller CNC language. Also, described are two techniques for
creating custom G or M-codes; customization using calls and customization using defines.
This chapter also provides an explanation of the CALLBACK commands that allow the
C programmer to attach a G or M-code to an executable program.

The programmer can override the meaning of an existing G or M-code, or define the
meaning of a new G or M-code. This also implies that care must be exercised when
assigning a G or M code number, so that an existing code is not redefined ! If the
programmer overrides an existing code, then they can optionally switch on or off the
override at will, either executing their routine or the Aerotech default action.

The customization routines and definitions could be placed in a separate file and included
into the main program, so that the customization is transparent to the main program. For
example, a program with G2’s that performs circles, is user transformable into a program
that performs programmer defined actions on a G2. The user does this by placing the
single line including the appropriate file at the beginning of the program or in another file
included by the main program.

Customization using defines is slightly quicker in execution, but customization by calls
allows passing of arguments to the custom G or M-code via arguments. Custom M-codes
would be used to perform I/O functions, where speed is important and no arguments are
normally needed. For this reason customization by define would normally be used in
custom M-codes. Custom G-codes would be used to perform more complex motion
related activities that might require parameters. For this reason customization by call
would normally be used in custom G-codes. However, the emphasis is, the user may use
either method with either type of custom code.

Custom Commands U600 CNC Programming Manual

7-2 Aerotech, Inc. Version 1.1

7.2. Custom M-codes (Using Defines)

By using the “#define” compiler directive command the programmer can replace any G-
code or M-code with their own CNC program. The define inserts the program block
specified directly into the program.

There is no limit to the length of a program a user can set up in a define. The “\”
character, used as a continuation character, tells the #define statement to insert a line
break and continue looking for text on the next line. Note that the last text line of the
define includes the “\” character, because a blank line must follow.

The examples below explain customization using defines and inline comments with those
examples. However, we recommend that the programmer fully understand the “#define”
command before proceeding.

In the example below, the user defined that M1100 sets output bit 1, but waits for input
bit 2 before proceeding to the next CNC line in the program.

EXAMPLE:

#define M1100 $BO1 = 1\ ;FIRST LINE OF DEFINE

$GLOBAL0 = M2200\ ;Reads virtual input bit #1

IF ($BI2 EQ 1)\ ;Sets output bit #1 if input bit #2 is set

 $BO1 = 1\

ENDIF\ ;BLANK LINE MUST FOLLOW

;THIS IS THE REQUIRED BLANK LINE

7.2.1. Custom M-Code Tips

When creating custom defined G-codes, the exact format of the G-code does make a
difference. For example, a G1 is not the same as a G01 when creating a custom G-code.
In fact, this mechanism has an interesting use. The user can define G1 to be their custom
code, and then G01 instead executes the default action.

There are a few powerful statements that are of interest to the user when defining
M-codes; they are ONGOSUB, ON, and WAIT.

WAIT allows the user to hold on a CNC line until a certain condition is true or time out
(this could be used to make an improved version of the example in Section 7.2.).

The ON and ONGOSUB establish conditions that are monitored constantly throughout
program execution. One condition could be when an I/O bit is on or off. This is useful for
watching safety type conditions. The ON command simply sets a bit when the condition is
true. The ONGOSUB and RETURN command allow for more complex activities when
the condition is satisfied, including complete control over motion recovery if the
condition occurs during motion.

U600 CNC Programming Manual Custom Commands

Version 1.1 Aerotech, Inc. 7-3

7.3. Custom G-codes (Using Calls)

By using the “#define” compiler directive command and the CALL/FARCALL extended
command, the programmer can replace any G-code or M-code with their own CNC
program. The axis block that might normally accompany that G-code is then interpreted
as arguments to the programmer’s CNC program. Furthermore, the user can switch on
and off the G-code override by using the “#define” (with no second argument) and
“#include” compiler directives.

The examples below explain customization using defines and inline comments with those
examples. However, we recommend that the programmer fully understand the “#define”,
“#include”, and “CALL” or “FARCALL” commands before proceeding. Another
requirement is the understanding of the syntax of CNC words and call arguments. The
example below uses all of these.

In example 1 the user replaced the “G1” command with a call to the subroutine “myG1”,
that simply adds any passed X, Y or Z parameter values and places them in global
variable zero.

Notice the use of the “.DEFINED” keywords, to ensure we only process those
parameters passed into the program.

EXAMPLE 1

NO1 G1 X2 Y2 ;Does a normal G1

#define G1 CALL myG1 ;Replaces G1 with call to myG1

NO2 G1 X2.1 Y2 z3.4 ;This calls myG1 which sets $GLOB0 to 7.5

NO3 GX2.1Y2z3.4 ;Same as NO2, but with no separating spaces

#define G1 ;Reverts back to normal G1

NO4 G1 X2 Y2 ;Does a normal G1

NO5 M02

DFS myG1

$GLOB0 = 0

IF ($X.DEFINED) $GLOB0 = $GLOB0 + $X ;Before adding X, make sure we were
 ;passed an X value

IF ($Y.DEFINED) $GLOB0 = $GLOB0 + $Y ;Before adding Y, make sure we were
 ;passed a Y value

IF ($Z.DEFINED) $GLOB0 = $GLOB0 + $Z ;Before adding Z, make sure we were
 ;passed a Z value

RETURN

ENDDFS

Custom Commands U600 CNC Programming Manual

7-4 Aerotech, Inc. Version 1.1

Note, the “\x20” at the end of the first define statement, (between N01 and N02). The “\x”
tells the compiler that the next two digits specify the hexadecimal code of an ASCII
character to insert. In this case, “20” is the hexadecimal code for a space. Without this
trailing space, line N03 would generate a compiler error, because the subroutine name
would be seen as “myG1X2.1Y2z3.4”. This technique must be used, because the
compiler removes trailing spaces from replacement strings (at the end of the #define).

This technique is not limited to just spaces, any ASCII code can be inserted this way.
Furthermore, it is not limited to just the end of the define, for example:

#define G1 CALL /x60/x79/x47/x31 ; This is the same as “#define G1 CALL myG1”

The example below shows where the user made the G1 test binary input 1 before moving.
Otherwise, it does not move. Note that the subroutine must switch off the G1 override
before running the standard G1. Also, the syntax for transferring the passed argument
values into the standard G1 include the use of a “p” argument to receive the feedrate (only
axis and argument CNC words can be passed in). The example suffers from the limitation
that it only works in G91 mode, or if both X and Y values passed in on every move. For
example, if we are in G90 mode and at point {3,3}, then an execution of “G1 X6” moves
to {6,0}, not the expected {6,3}. It is left as an exercise to the reader to use the
“DEFINED” keyword to correct this defect.

EXAMPLE

#define G1 CALL myG1 ;Replaces G1 with call to myG1

G1 X10 Y10

G1 X10 Y10 F100 ;WARNING!! THIS IS INCORRECT SYNTAX, THE F
;CANNOT BE PASSED

G1 X10 Y10 p100 ;This is OK, use “p” to pass in feedrate

M02

DFS myG1

IF ($BI2 EQ 0) ;If it’s OK to move

#define G1 ;So I can call the normal G1

$GLOB0 = 0

IF ($p.DEFINED) ;Feedrate was passed in, use it
G1 X$X Y$Y F$p

ELSE ;No feedrate passed in, use the default.

G1 X$X Y$Y

ENDIF

#define G1 CALL myG1 ;To reestablish myself

ENDIF

RETURN

ENDDFS

U600 CNC Programming Manual Custom Commands

Version 1.1 Aerotech, Inc. 7-5

7.3.1. Custom G-Code Tips

It cannot be emphasized enough that the user must check the “DEFINED” argument
variant before using the argument value, otherwise the data may be undefined.

7.4. Custom Commands (Using Callback Commands)

Callback commands allow the user to execute programs. The callback, combined with
either of the methods described in sections 7.2. and 7.3., allow the user to define M or
G-codes that execute user-supplied executables.

∇ ∇ ∇

Custom Commands U600 CNC Programming Manual

7-6 Aerotech, Inc. Version 1.1

U600 CNC Programming Manual Glossary of Terms

Version 1.1 Aerotech, Inc. A-1

APPENDIX A: GLOSSARY OF TERMS

In This Section:
• Introduction ..A-1

A.1. Introduction

This appendix contains definition of terms used throughout this manual.

Active - A task is active once a program on its call stack has begun execution. A
program is active if it is the top program on a task call stack. A task or program must be
associated before becoming active.

Associated - A task is associated if it has at least one program on its call stack. A
program is associated if it is on at least one of the task call stacks.

Asynchronous Motion - Non-coordinated motion that is independent of CNC execution.

Axis Index - Zero based index used to identify an axis.

Axis Parameters - Parameters that affect the specified physical axis.

Bind - Declaring permanent ownership of a task axis by a task. A task binds a task axis.

Callback - A means of communications between the axis processor and frontend. Implies
the involvement of an interrupt.

Capture - Declaring ownership of a task axis by a task. A task captures a task axis.

Contour Motion - Implies CNC Motion commands G1, G2, G3……

Download (Send) - Implies communications to the axis processor card. Data is always
downloaded or sent to the U600.

Executing - A task is executing if processing the actions of a single program block. A
program is executing if it is active and a block is being processed by a task.

Glossary of Terms U600 CNC Programming Manual

A-2 Aerotech, Inc. Version 1.1

Free - Releasing of ownership of a task axis by a task.. A task frees a task axis.

Global Parameters - Parameters that affect the over system.

Global Variables - A variable that can be accessed or shared by any task or program.

Machine Parameters - Parameters that affect the specified physical axis.

Map - A way to relate task axes to physical axes. Map a task axis to a physical axis.

Physical Axis - Implies direct correlation to hardware. Physical Axis 1 is channel 1.

Point-to-Point Motion - Implies CNC Motion Commands G0.

Program - Programs are loaded independently of any task. The program contains code,
variable, and label information. A program can be associated with any number of tasks.
Program code and label information are common to all tasks. Program variables are
specific to the process.

Program Handle - An identifier that is assigned to a program that the axis processor
uses to identify that program.

Program Variables - A variable that is local-in-scope to a given program. These are
local to the currently active program.

Read (Open) - Implies file access. A file is always read or opened.

Task (Process) - An independently running process containing its own set of parameters,
variables, and call stack.

Task Axis - Used by a task and mapped to a physical axis. Designated by following
letters - X Y Z U V W A B x y z u v w a b.

Task Index - Zero based index used to identify a task.

Task Parameters - Parameters that affect a given task.

U600 CNC Programming Manual Glossary of Terms

Version 1.1 Aerotech, Inc. A-3

Task Variables - A variable that is local-in-scope to a given task. These can be accessed
or shared by all programs that are/or become active on the given task.

Upload - Implies communications to the axis processor card. Data is always uploaded to
the U600.

Write (Save) - Implies file access. A file is always written or saved.

∇ ∇ ∇

Glossary of Terms U600 CNC Programming Manual

A-4 Aerotech, Inc. Version 1.1

U600 CNC Programming Manual Warranty and Field Service

Version 1.1 Aerotech, Inc. B-1

APPENDIX B: WARRANTY AND FIELD SERVICEB

In This Section:
• Laser Products...B-1
• Return Procedure...B-1
• Returned Product Warranty Determination...............B-1
• Returned Product Non-warranty Determination........B-2
• Rush Service..B-2
• On-site Warranty Repair ...B-2
• On-site Non-warranty RepairB-2

Aerotech, Inc. warrants its products to be free from defects caused by faulty materials or
poor workmanship for a minimum period of one year from date of shipment from
Aerotech. Aerotech’s liability is limited to replacing, repairing or issuing credit, at its
option, for any products which are returned by the original purchaser during the warranty
period. Aerotech makes no warranty that its products are fit for the use or purpose to
which they may be put by the buyer, where or not such use or purpose has been disclosed
to Aerotech in specifications or drawings previously or subsequently provided, or whether
or not Aerotech’s products are specifically designed and/or manufactured for buyer’s use
or purpose. Aerotech’s liability or any claim for loss or damage arising out of the sale,
resale or use of any of its products shall in no event exceed the selling price of the unit.

Aerotech, Inc. warrants its laser products to the original purchaser for a minimum period
of one year from date of shipment. This warranty covers defects in workmanship and
material and is voided for all laser power supplies, plasma tubes and laser systems subject
to electrical or physical abuse, tampering (such as opening the housing or removal of the
serial tag) or improper operation as determined by Aerotech. This warranty is also voided
for failure to comply with Aerotech’s return procedures.

Claims for shipment damage (evident or concealed) must be filed with the carrier by the
buyer. Aerotech must be notified within (30) days of shipment of incorrect materials. No
product may be returned, whether in warranty or out of warranty, without first obtaining
approval from Aerotech. No credit will be given nor repairs made for products returned
without such approval. Any returned product(s) must be accompanied by a return
authorization number. The return authorization number may be obtained by calling an
Aerotech service center. Products must be returned, prepaid, to an Aerotech service
center (no C.O.D. or Collect Freight accepted). The status of any product returned later
than (30) days after the issuance of a return authorization number will be subject to
review.

After Aerotech’s examination, warranty or out-of-warranty status will be determined. If
upon Aerotech’s examination a warranted defect exists, then the product(s) will be
repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an air
freight return, the product(s) will be shipped collect. Warranty repairs do not extend the
original warranty period.

Laser Products

Return Procedure

Returned Product
Warranty Determination

U600 CNC Programming Manual Warranty and Field Service

B-2 Aerotech, Inc. Version 1.1

After Aerotech’s examination, the buyer shall be notified of the repair cost. At such time
the buyer must issue a valid purchase order to cover the cost of the repair and freight, or
authorize the product(s) to be shipped back as is, at the buyer’s expense. Failure to obtain
a purchase order number or approval within (30) days of notification will result in the
product(s) being returned as is, at the buyer’s expense. Repair work is warranted for (90)
days from date of shipment. Replacement components are warranted for one year from
date of shipment.

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-
warranty status, the buyer must issue a valid purchase order to cover the added rush
service cost. Rush service is subject to Aerotech’s approval.

If an Aerotech product cannot be made functional by telephone assistance or by sending
and having the customer install replacement parts, and cannot be returned to the Aerotech
service center for repair, and if Aerotech determines the problem could be warranty-
related, then the following policy applies:

Aerotech will provide an on-site field service representative in a reasonable amount of
time, provided that the customer issues a valid purchase order to Aerotech covering all
transportation and subsistence costs. For warranty field repairs, the customer will not be
charged for the cost of labor and material. If service is rendered at times other than
normal work periods, then special service rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the
terms and conditions stated in the following "On-Site Non-Warranty Repair" section
apply.

If any Aerotech product cannot be made functional by telephone assistance or purchased
replacement parts, and cannot be returned to the Aerotech service center for repair, then
the following field service policy applies:

Aerotech will provide an on-site field service representative in a reasonable amount of
time, provided that the customer issues a valid purchase order to Aerotech covering all
transportation and subsistence costs and the prevailing labor cost, including travel time,
necessary to complete the repair.

Aerotech, Inc. Phone: (412) 963-7470
101 Zeta Drive Fax: (412) 963-7459
Pittsburgh, PA 15238-2897
USA

∇ ∇ ∇

Returned Product Non-
warranty Determination

Rush Service

On-site Warranty Repair

On-site Non-warranty
Repair

Company Address

U600 CNC Programming Manual Index

Version 1.1 Aerotech, Inc. i

A
ABS, 3-9
Absolute Dimension Programming Mode, 5-95
Absolute Position Programming, 5-95
Accel Rate Parameter, 5-88
Accel Time Parameter, 5-83, 5-87
Accel/Decel, 5-1, 5-24, 5-81, 5-84
Accel/Decel Rate Based, 5-88
Accel/Decel Time Based, 5-87
Acceleration, 5-39
Acceleration Mode, Linear, 5-86
Acceleration Mode, Sinusoidal, 5-84
Acceleration Rate, Set, 5-86, 5-120
Acceleration Rates, Setting, 5-89
Acceleration Time, Set, 5-83
Acceleration, Instantaneous, 5-39
Acceleration, Sinusoidal, 5-85
Acceleration/Deceleration, 5-1, 5-7, 5-81, 5-84
AccelMode Parameter, 5-84
ACOS, 3-9
Activate Cutter Compensation Left, 5-65
Activate ICRC Left, 5-64
Activate Left Cutter Compensation, 5-65
Activate Normalcy Mode Left, 5-48
Activate Normalcy Mode Right, 5-49
AerCamTableSetMode, 6-55
AerMoveInfeedSlave, 6-55
Aliases, 3-22
Allow Safe Zone, 5-23, 5-24, 5-54, 5-55
Analog inputs, 3-29
Analog Output Control Using PSOT Command, 6-8
Analog/Digital Output Command (PSOT), 6-106
ANSI C language standard, 4-2
APT Variables, 3-7
Argument Lists, 3-6
Arguments, 3-6
Arithmetic operators, 3-1
ASCII characters, 2-2
ASCII codes, 1-6
ASIN, 3-9
Assignment commands, 3-17
Asynchronous motion, 5-3
Asynchronous moves, 5-36
Axes, Circular, 5-107
Axes, Linear, 5-107
Axis parameters, 3-25
Axis Points, 3-6
Axis processor based commands, 6-2

B
Backlash compensation, 5-57, 5-59
BAND, 3-13
BI, 3-28
Binaries, 3-28

BIND, 6-12
Blending contoured moves, 5-36
Block Delete Character, 2-3
BNOT, 3-13
BO, 3-28
BOR, 3-13
BXOR, 3-13

C
Call Library Subroutine, 6-47, 6-64, 6-117
Call Subroutine, 6-47, 6-64, 6-117
CALLDLL, 6-14
Cancel Fixture Offset, 5-74
Case sensitivity, 1-6
CCW Motion, 5-34, 5-42, 5-54, 5-59
Characters, 2-2
Circular Axes, 5-107
Circular direction codes, 5-110
Circular Interpolation, 5-25, 5-34, 5-41, 5-42, 5-54
Circular Interpolation, Inverse, 5-111
Circular move, 5-6
Circular moves, 5-47
CLLS, 6-117
Clockwise, Spindle, 5-129
CLS, 6-117
CNC Block Constants, 3-5
CNC block syntax, 5-13
CNC design philosophy, 1-3
CNC expressions, 3-5
CNC letter

E, 3-3
I, 3-3
J, 3-3
K, 3-3
M, 3-3
S, 3-3
T, 3-3

CNC Letter, 3-3
CNC Manual Data Input Screen, 5-132
CNC masks, 3-4
CNC words, 3-4
Command Sets, 2-1
Comment Operator, 2-3
Comparators, 3-8
Compiler directive commands, 4-1
Completed Touch Probe Cycle, 5-73
Computation precedence, 3-10
Condition Branch on Errors, 6-79
Conditional Looping, 6-132
Conditional Statement, 6-47
Constant Acceleration vs. 1-Cosine, 5-85
Constants, 3-14
Contoured moves, 5-5, 5-6
Control, Data Collection, 6-4, 6-15, 6-19, 6-25
COS, 3-9
Counterclockwise, Spindle, 5-129

 U600 CNC Programming Manual Index

ii Aerotech, Inc. Version 1.1

Custom commands, 7-1
Custom G-codes, 7-2
Custom M-codes, 7-2
Cutter Compensation Axes, Set, 5-67
Cutter Compensation Radius, Set, 5-66
Cutter Radius Compensation, Intersectional, 5-1, 5-58
CW Motion, 5-25, 5-41, 5-54
Cycle, 6-88
Cycles, Measuring Probe, 5-73, 6-90

D
DATA, 6-19, 6-25
Data Collection Control, 6-4, 6-15, 6-19, 6-25
Deactivate Cutter Compensation, 5-63
Decel Rate Parameter, 5-87, 5-88
Decel Time Parameter, 5-87
Deceleration /Acceleration, 5-7
Deceleration by Force, 5-40, 5-43, 5-51
Deceleration Rate, Set, 5-87, 5-120
Define program array, 6-28
Define statement, 4-2
Define Subroutine, 6-13
Define User Variable, 6-27
Delay, 5-35
Design philosophy, 1-3
Detected Probe Input, 5-73
Digital Output Control Using PSOT Command, 6-8
Digital Touch Probe Measuring, 5-73
Digital/Analog Output Control Command (PSOT), 6-

106
Dimensions, Safe Zones, 5-55
Disable backlash compensation, 5-57
Disable Feedrate Override, 5-132
Disable Normalcy Mode, 5-48
Disable Polar or Cylindrical coordinate

transformation, 5-68
Disable Safe Zones, 5-55
Disabled Mode of Operation, 5-48
Discontinue Cutter Compensation, 5-63
DISPLAY, 6-27
Distance Programming, 5-96
Distance Programming Mode, 5-95
Distances, Setting, 5-89, 5-90
Dominant Feed Parameter, 5-106
Dominant Feedrate Overview, 5-105
DVAR

reserved word, 6-27
DVAR command, 6-27
DVAR extended command, 3-21
Dwell, 5-35

E
E word, 5-5
ELSE

reserved word, 6-47

Enable cylindrical coordinate transformation, 5-71
Enable Safe Zone, 5-23, 5-24, 5-54, 5-55
Enable spindle shutdown, 5-108
Enable/Disable Position Synchronized Output Firing

(PSOF Command), 6-100
ENDM command, 6-30
ENDREPEAT

reserved word, 6-112
ENDRPT

reserved word, 6-112
English Units, 5-89, 5-90
Entry Block, User Defined, 6-64
ErrCode task parameter, 6-3
EXECUTE, 6-30
Execute OS/2 Program, 6-30
Execution, Stop, 5-128
EXP, 3-9
Expression Component, 3-2
Expression Element, 3-1
Expression Type, 3-2
Expressions, 3-1

F
F word, 5-5
FARCALL, 6-33
Fast Feedrate, 5-23
F-code parameter blocks, 5-22
Feed Per Min. Feedrate Programming, 5-100
Feed Per Spindle Rev. Feedrate Programming, 5-101
Feedrate, 5-14
Feedrate Mode Programming, 5-99, 5-100, 5-101
Feedrate Override Lock, 5-132
Feedrate Override Unlock, 5-132
Feedrate Override, Disable, 5-132
Feedrate, Fast, 5-23
Feedrate, Linear Dominant, 5-107
Feedrate, Rapid, 5-23
Feedrates, Setting, 5-89, 5-90
Field Service Policy, B-1
File Close Command, 6-36
File Open Command, 6-36
File Write Command, 6-40
Filenames, 4-6
Firing Distance

calculations using multiple axes, 6-98
Firing Distance Commmand, 6-97
Firing Distance Entry, 6-7
Fixture Offset, 5-74
Fixture Offset Example, 5-80
Fixture Offset#1, 5-74
Fixture Offset#2, Setting, 5-76
Fixture Offset, Canceled, 5-74
Fixture offsets, 5-74
Fixture Offsets, 5-76
Floating point constants, 3-7, 3-12
Floating point expressions, 3-7

U600 CNC Programming Manual Index

Version 1.1 Aerotech, Inc. iii

Floating point functions, 3-9
Floating point operators, 3-8
Floating point variables, 3-8
Force Deceleration, 5-40, 5-43, 5-51
Force deceleration to zero, 5-109, 5-123
FRAC, 3-9
FREE, 6-43
Functionality, 1-3

G
G0, 5-23
G01, 5-24
G02, 5-25
G03, 5-34
G04, 5-35
G100, 5-108
G101, 5-108
G108, 5-109
G109, 5-109
G110, 5-110
G111, 5-111
G12, 5-41
G13, 5-42
G130, 5-114
G131, 5-114
G16, 5-43
G165, 5-120
G166, 5-120
G17, 5-44
G18, 5-44
G19, 5-44
G20, 5-48
G21, 5-48
G22, 5-49
G26, 5-51
G27, 5-51
G28, 5-51
G29, 5-51
G34, 5-54
G35, 5-54
G36, 5-54
G37, 5-55
G38, 5-57
G39, 5-57
G40, 5-63
G41, 5-64
G42, 5-65
G43, 5-66
G44, 5-67
G45 command, 5-68
G47 command, 5-71
G51, 5-73, 6-90
G53, 5-74
G54, 5-74
G55, 5-76
G60, 5-83

G61, 5-83
G62, 5-84
G63, 5-84
G64, 5-86
G65, 5-86
G66, 5-87
G67, 5-87
G68, 5-88
G70, 5-89
G71, 5-90
G8, 5-39
G82, 5-90
G9, 5-40
G90, 5-95
G91, 5-96
G92, 5-97
G93, 5-99
G94, 5-100
G98, 5-106
G99, 5-107
G-code blocks, 3-6
G-codes, 5-2
GLOB, 3-1, 3-2
Global parameters, 3-23
Global variables, 3-18
Go To User Defined Entry Block, 6-44, 6-64

H
Halt Program, 5-128
Halt Spindle Movement, 5-130
Hexidecimal numbers, 3-12
HOME, 6-46
Home, Position, 5-97

I
ICRC, 5-1, 5-58
ICRC, Activate Right, 5-64
ICRC, Cutter Compensation Activate Left, 5-65
ICRC, Deactivate, 5-63
IF

reserved word, 6-47
If-Then-Else-EndIf Statement, 6-47
Inch Dimension Programming Mode, 5-89
Include statement, 4-6
Incremental Position Programming, 5-96
Index expression, 3-21
Initializing Variables, 6-27
Input, Probe, 5-73
Instantaneous Acceleration, 5-39
INT, 3-9
Integer constants, 3-12
Integer expressions, 3-12
Integer operators, 3-13
Interpolation, Circular, 5-25, 5-34, 5-41, 5-42, 5-54
Interpolation, Circular Inverse, 5-111

 U600 CNC Programming Manual Index

iv Aerotech, Inc. Version 1.1

Interpolation, Linear, 5-24
Intersection Cutter Radius Compensation, 5-1, 5-58
Inverse Circular Interpolation, 5-111
Inverse Time Feedrate Programming, 5-99

J
JUMP, 6-44
Jump to User Defined Entry Block, 6-44

K
Keyword "F", 5-35, 5-107
Keywords "I/J/K", 5-110, 5-111

L
Labels, 3-15
Laser Pulse Output Definition, 6-8
Left Cutter Compensation, Activate, 5-65
Left, Path Compensation, 5-66
Line terminator, 4-4
Line Terminators, 2-2
Linear Acceleration Mode, 5-86
Linear Axes, 5-107
Linear Feedrate Dominant, 5-107
Linear Interpolation, 5-24
Linear move, 5-6
Lines, 2-3
Locate Part in Space, 5-73
Lock Spindle Feedrate Override, 5-132
Lock, Feedrate Override, 5-132
Loop, Conditional, 6-132
Loop, Repeat, 6-112

M
M0, 5-128
M01, 5-128
M02, 5-128
M03, 5-129
M04, 5-129
M05, 5-130
M19, 5-130
M30, 5-130
M47, 5-131
M48, 5-132
M49, 5-132
M50, 5-132
M51, 5-132
Machine Parameter Set-up Screen, 5-4
Machine parameters, 3-26
Manual Feedrate Override, 5-23
Map command, 1-7
M-codes, 5-2
Measuring Cycles, Probe, 5-73, 6-90
Metric Dimension Programming Mode, 5-90

Metric Units, 5-89, 5-90
MFO adjustments, 5-39
Mirror image example, 5-92
Modal, 5-7
Modal velocity profiling, 5-109
Mode of Operation Disabled, 5-48
Mode, Activate Normalcy Right, 5-49
Mode, Linear Acceleration, 5-86
Mode, Normalcy, 5-1, 5-45
Mode, Normalcy Disabled, 5-48
Mode, Normalcy Left, 5-48
Modify Variables, 6-28
Motion modifier words, 5-21
Motion type words, 5-21
Motion types, 5-2
Motion, CCW, 5-34, 5-42, 5-54
Motion, CW, 5-25, 5-41, 5-54

N
Normalcy Left, 5-49
Normalcy Mode, 5-1, 5-45
Normalcy Mode Left, Activate, 5-48
Normalcy Mode Right, Activate, 5-49
Normalcy Right, 5-49

O
Offset words, 5-21
Offset#1, Fixture, 5-74
ON command, 6-77
ONGOSUB, 6-79
Operators, 3-14
Optional Stop, 5-128
OS/2 Program Execution, 6-30
OSC

reserved word, 6-88
OSCILLATE

reserved word, 6-88
OSCillate command, 6-88
Output Definition of Laser Pulse, 6-8
Output Firing, Enabling and Disabling, 6-100
Outputs

control using PSOT command, 6-8
PSOT Command, 6-106
setting output voltages of DACs using PSOT, 6-107
setting using PSOT command, 6-106

Override, Feedrate Lock, 5-132
Overview, Accel/Decel, 5-1, 5-81, 5-84
Overview, Dominant Feedrate, 5-105
Overview, ICRC, 5-1, 5-58
Overview, Normalcy Mode, 5-1, 5-45

P
Parameter, Accel Rate, 5-88
Parameter, Accel Time, 5-83, 5-87

U600 CNC Programming Manual Index

Version 1.1 Aerotech, Inc. v

Parameter, AccelMode, 5-84
Parameter, Decel Rate, 5-87, 5-88
Parameter, Decel Time, 5-87
Parameter, Dominant Feed, 5-106
Parameter, Ramp Type, 5-87, 5-88
Parameter, Time Based, 5-83
Parameters, 3-22
Parameters, Plane Select, 5-110, 5-111
Parameters, Rate Based, 5-87
Parenthesis, 6-5
Parsing, 1-3
Parts rotation, 5-93
Path Compensation Left, 5-66
Path Compensation Right, 5-65
PAXIS, 3-25
Permit Safe Zone, 5-23, 5-24, 5-54, 5-55
PGLOB, 3-23
Place Items In Window, 6-27
Plane Select Parameters, 5-110, 5-111
Plane Selection, 5-51
PMACH, 3-26
Polar/Cylindrical transformations, 5-68
Position Programming, Incremental, 5-96
Position Synchronized Output Firing Distance

Commmand, 6-97
Position Synchronized Output Pulse Configuration

(PSOP), 6-102
Positioning, Point-to-point, 5-23
Precedence, 3-10
Prerequisites, 1-2
Probe Input, 5-73
Probe Measuring Cycles, 5-73, 6-90
Probe Touch, 5-73
Program array variables, 3-21
Program Execution, Restart, 5-130, 5-131
Program Flow, 6-28
Program Stop, 5-128
Program variables, 3-20
PROGRAMMING, 5-1
Programming Mode, Absolute Dimension, 5-95
Programming Mode, Distance, 5-95
Programming Mode, Metric, 5-90
Programming Units, 5-89
Programming, Distance, 5-96
Programming, Feed Per Min., 5-100
Programming, Feed Per Spindle Rev. Feedrate, 5-101
Programming, Feedrate Mode, 5-99
PSOD Command, 6-97
PSOF Command, 6-100
PSOP Command, 6-102
PSOT Command, 6-106
PTASK, 3-24
Pulse Configuration Command (PSOP), 6-102

R
Ramp Type Parameter, 5-87, 5-88

Range, Array Index, 6-28
Rapid Feedrate, 5-23
Rapid Motion, 5-39
Rate Based Parameters, 5-87
Read Cycle, Touch Probe, 5-73
REF, 6-46
Registers, 3-29
Related documentation, 1-2
REPEAT

reserved word, 6-112
Repeat Loop, 6-112
Replacement string, 4-4
Replacement strings, 4-2, 4-5
Restart Program Execution, 5-130, 5-131
Restore preset position registers, 5-90
Restrict Safe Zones, 5-55
Restricted Areas USAF, 5-55
RI, 3-29
Right, Path Compensation, 5-65
RO, 3-29
Rotary Feedrate Dominant, 5-106
RPT, 6-112

reserved word, 6-112

S
Safe Zone Boundaries, 5-55
Safe Zone Fault, 5-55
Safe Zone, Disable, 5-55
Safe Zone, Enable, 5-23, 5-24, 5-54, 5-55
Select, Plane, 5-51
Semicolon, 2-3
Servo update rate, 5-114
Set Acceleration Rate, 5-86, 5-120
Set Acceleration Time, 5-83
Set Cutter Compensation Axes, 5-67
Set Cutter Compensation Radius, 5-66
Set Deceleration Rate, 5-87, 5-120
Set Fixture Offset #2, 5-76
Set Profile Time, 5-84
Setting Acceleration Rates, 5-89
Setting Fixture Offsets, 5-74
Simultaneous movement of multiple axes, 5-5
SIN, 3-9
Sinusoidal Acceleration, 5-85
Sinusoidal Acceleration Mode, 5-84
Software Home, 5-97
Space, Locate Part, 5-73
Special Symbol, (), 6-5
Specify Cutter Compensation Axes, 5-67
Specify Cutter Compensation Radius, 5-66
Specify Fixture Offset, 5-74
Specify Subroutine, 6-13
Speeds, Setting, 5-89
Spindle Feedrate Override, Lock, 5-132
Spindle Feedrate Override, Unlock, 5-132
Spindle Movement, Stop, 5-130

 U600 CNC Programming Manual Index

vi Aerotech, Inc. Version 1.1

Spindle Off, 5-130
Spindle Off/Re-orient, 5-130
Spindle On Clockwise, 5-129
Spindle On Counterclockwise, 5-129
Spindle shutdown mode, 5-108
SQRT, 3-9
Stand-alone words, 5-21
Stop Cutter Compensation, 5-63
Stop Spindle Movement, 5-130
Stop, Optional, 5-128
Stop, Program, 5-128
String32 expressions, 3-14
String32 operators, 3-15
String32 constants, 3-15
String32 variables, 3-15
STRTASK, 3-20
Subroutine, Call, 6-12, 6-33, 6-47, 6-64, 6-117
Subroutine, Define, 6-13
Subroutine, Library Call, 6-12, 6-33, 6-47, 6-64, 6-

117
Symbols, Comment, 2-3
Synchronization, 6-97
Synchronous motion, 5-2
Syntax parsing, 1-3

T
TAN, 3-9
Target Positions, 5-5
Target word, 4-3
Task parameter

ErrCode, 6-3
Task parameters, 3-24
Task variables, 3-20
THEN

reserved word, 6-47
Time Based Parameter, 5-83
Time, Dwell, 5-35
Time-outs, 6-3

Tool Orientation, 5-45
Touch Probe Measuring, Digital, 5-73
Touch Probe Read Cycle, 5-73
Tracking Axes, Specifying, 6-7
Truncation, 5-5

U
Units, English, 5-89, 5-90
Units, Metric, 5-89, 5-90
Units, Programming Mode, 5-89, 5-90
Unlock Spindle Feedrate Override, 5-132
Unlock, Feedrate Override, 5-132
User Defined Entry Block, Jump, 6-44, 6-64
User Variable, 6-27

V
Value, Axis Parameter, 6-119
Variable, User, 6-27
Variables, 1-4, 3-18
Variables V0-V255, 6-97
Variants, 3-14, 3-16
Vector feedrate, 5-6
Velocity, 5-6, 5-39, 5-40
Velocity Profile with G9, 5-41
Velocity Profile without G9, 5-40
Velocity profiling, 5-36
Verbal comparator, 3-8
Virtual I/O, 3-28

W
Wait for Cycle Start, 5-130
Warranty Policy, B-1
While-Do-Endwhile, 6-132
Whitespace, 1-6, 2-2
Window, Item Placing, 6-27

∇ ∇ ∇

READER’S COMMENTS

UNIDEX U600 Series CNC Programming, Win NT/95 Manual
P/N EDU 158, June 2000

Please answer the questions below and add any suggestions for improving this document. Is the
information:

Yes No

 Adequate to the subject? ____ ____

 Well organized? ____ ____

 Clearly presented? ____ ____

 Well illustrated? ____ ____

 Would you like to see more illustrations? ____ ____

 Would you like to see more text? ____ ____

How do you use this document in your job? Does it meet your needs?
What improvements, if any, would you like to see? Please be specific or cite examples.

 Your name ________________
 Your title ________________
 Company name ________________

 Address ________________

Remove this page from the document and fax or mail your comments to the technical writing
department of Aerotech.

AEROTECH, INC.
Technical Writing Department
101 Zeta Drive
Pittsburgh, PA. 15238-2897 U.S.A.
Fax number (412) 963-7009

AEROTECH
R

	COVER: THE UNIDEX 600 SERIES CNC PROGRAMMING, WIN NT/95 MANUAL
	TABLE OF CONTENTS
	LIST OF FIGURES
	Figure 4-1. Flow of Execution of Compiler Directives
	Figure 5-1. CW Circular Interpolation
	Figure 5-2. Orientation of a G2, in various planes in Coord. System #1
	Figure 5-3. Orientation of a G3, in various planes in Coord. System #1
	Figure 5-4. PQ Method Example
	Figure 5-5. “R” Method Example
	Figure 5-6. Circular Radius Example
	Figure 5-7. Arc Center Change
	Figure 5-8. CCW Circular Interpolation
	Figure 5-9. G8 and G9 Velocity Profile
	Figure 5-10. Velocity Profile with G8
	Figure 5-11. Velocity Profile Without G9
	Figure 5-12. Velocity Profile with G9
	Figure 5-13. Coordinate System 1 (Clockwise or G2 motion)
	Figure 5-14. Tool Orientation
	Figure 5-15. Normalcy Left
	Figure 5-16. Normalcy Right
	Figure 5-17. Coordinate System 2 Orientation (Clockwise or G2 Motion)
	Figure 5-18. Unrestricted Safe Zones
	Figure 5-19. Cutter Radius Compensation Path
	Figure 5-20. Cutter Compensation with Intervening Statements
	Figure 5-21. Cutter Radius Compensation Lead-On Moves
	Figure 5-22. Inside Corner
	Figure 5-23. Outside Corner (Diagram A)
	Figure 5-24. Lead Off Moves
	Figure 5-25. Path Compensation Left
	Figure 5-26. Path Compensation Right
	Figure 5-27. Polar/Cylindrical Transformations Diagram
	Figure 5-28. X, Y, Rotational and Optional Infeed Axis
	Figure 5-29. Feedrate Changes
	Figure 5-30. UpdateTimeSec Diagram
	Figure 5-31. Constant vs. Cosine Acceleration
	Figure 5-32. G83 Mirror Image Example 1
	Figure 5-33. G83 Mirror Image Example 2
	Figure 5-34. G84 Parts Rotation Example
	Figure 5-35. Absolute Mode Programming
	Figure 5-36. Incremental Mode Programming
	Figure 5-37. Scale Factor Example
	Figure 5-38. Scaling Center Illustration
	Figure 5-39. Scaling Center Illustration 2
	Figure 6-1. Align Command Function Illustration
	Figure 6-2. Master/Slave Profile
	Figure 6-3. MSGBOX Pop-up Message Example
	Figure 6-4. The CDW Display List Window
	Figure 6-5. MSGINPUT Command Message Box Display
	Figure 6-6. MSGMENU Command Display
	Figure 6-7. Trigger Pulse Fired at Constant Increments
	Figure 6-8. Single Pulse Generated on Firing Condition
	Figure 6-9. Single Pulse Output with Lead, Width, and Trail
	Figure 6-10. Single One-shot Pulse Output
	Figure 6-11. User-Specified Analog Voltage
	Figure 6-12. Velocity Ramping
	Figure 6-13. Position Ramping
	Figure 6-14. Track Command D Diagram

	LIST OF TABLES
	Table 1-1. UNIDEX 600 Series Interface Manuals
	Table 1-2. Syntactic Description Language Components
	Table 3-1. Expression Examples
	Table 3-2. Summary of Floating-Point Operators Available (Where a and b are Arguments)
	Table 3-3. Summary of Floating-Point Functions Available (Where a is the Argument)
	Table 3-4. Operator Precedence Indexes
	Table 3-5. Summary of Integer Operators Available (Where a and b are Arguments)
	Table 3-6. Summary of Bitwise Operations
	Table 3-7. Variant Names
	Table 5-1. Where to Find Details
	Table 5-2. CNC Move Options
	Table 5-3. G-code and M-code Summary
	Table 5-4. Required Order of Axes in a G44, when no G16 has been Executed
	Table 5-5. Transformation from an X/Y Cartesian Plane to a Polar Coordinate System
	Table 5-6. Transformation from an X/Y Cartesian Plane to a Cylindrical Coordinate System
	Table 5-7. Fixture Offset Example
	Table 5-8. Accel/Decel G-codes Summary
	Table 5-9. G-Codes to Change Axes Used for Circular Interpolation
	Table 5-10. Relationship of Arc Direction, Plane, & Circle Center point
	Table 5-11. The Five Look-Ahead Cases
	Table 6-1. Where to Find Details
	Table 6-2. Extended Command Categories
	Table 6-3. Extended Command Summary
	Table 6-4. Data Available for Collection
	Table 6-5. Mode Parameter Values
	Table 6-6. Configuring Camming Motion
	Table 6-7. Configuring Camming Motion Cleanup
	Table 6-8. Button Specifiers
	Table 6-9. Input Window Specifiers (* = DEFAULT)
	Table 6-10. Button Specifiers (* = DEFAULT)
	Table 6-11. Distance Calculations for Multiple Axes Using the PSOD Command

	PREFACE
	CHAPTER 1: INTRODUCTION AND OVERVIEW
	1.1. Introduction
	1.2. Purpose of This Manual
	1.3. Prerequisites
	1.4. Related Documentation
	1.4.1. Hardware Manuals
	1.4.2. Programming Manuals
	1.4.3. MMI Interface Manual

	1.5. CNC Design Philosophy
	1.6. CNC Functionality Summary
	1.7. Syntactic Descriptions
	1.7.1. Elements of the Syntactic Description
	1.7.2. Keyword Case Sensitivity
	1.7.3. White space
	1.7.4. Syntax Description Examples
	1.7.5. Limitations and Bounds

	CHAPTER 2: COMMANDS
	2.1. Description
	2.1.1. Command Sets
	2.1.2. Conformance to Standards

	2.2. Programs
	2.2.1. White space
	2.2.2. Line Terminators
	2.2.3. Characters
	2.2.4. Comments
	2.2.5. Lines
	2.2.6. Block Delete

	CHAPTER 3: EXPRESSIONS
	3.1. Description
	3.2. Expressions
	3.2.1. Expression Elements
	3.2.2. Expression Types
	3.2.3. Expression Components
	3.2.4. Expression Examples

	3.3. CNC and Axis Letters
	3.4. CNC Masks (Axis Masks)
	3.5. CNC Words
	3.6. CNC Block Expressions
	3.6.1. CNC Block Constants
	3.6.1.1. CNC G-code Blocks
	3.6.1.2. Axis Points
	3.6.1.3. Argument Lists

	3.6.2. APT Variables

	3.7. Floating-Point Expressions
	3.7.1. Floating-Point Constants
	3.7.2. Floating Point Variables
	3.7.3. Floating Point Operators
	3.7.4. Floating Point Functions
	3.7.5. Floating Point Computation Precedence

	3.8. Integer Expressions
	3.8.1. Integer Constants
	3.8.1.1. Hexadecimal Numbers

	3.8.2. Integer Operators

	3.9. String 32 Expressions
	3.9.1. String32 Constants
	3.9.2. String32 Variables
	3.9.3. String 32 Operators

	3.10. Labels
	3.11. Variants
	3.11.1. Variant Types
	3.11.2. Variant Names
	3.11.3. Assignments to Variants
	3.11.4. Variables
	3.11.4.1. Global Variables
	3.11.4.1.1. Saving Global Variables to a File
	3.11.4.1.2. Restoring Global Variables from a File

	3.11.4.2. Task Variables
	3.11.4.3. Program Variables
	3.11.4.4. Program Array Variables

	3.11.5. Parameters
	3.11.5.1. Aliases
	3.11.5.2. Global Parameters
	3.11.5.3. Task Parameters
	3.11.5.4. Axis Parameters
	3.11.5.5.Machine Parameters
	3.11.5.6. Modifying Parameters from within a CNC Program
	3.11.5.6.1. Axis Parameters
	3.11.5.6.2. Machine Parameters
	3.11.5.6.3. Task Parameters

	3.11.6. Virtual I/O
	3.11.6.1. Binary I/O Bits
	3.11.6.2. Virtual I/O Registers
	3.11.6.3. Analog Inputs

	3.11.7. Call Arguments
	3.11.7.1. Call Argument Existence Testing

	CHAPTER 4: COMPILER DIRECTIVE COMMANDS
	4.1. Overview
	4.1.1. Compiler Directives Syntax

	4.2. Define Statements
	4.2.1. The Target Word
	4.2.2. Recognition of the Target Word
	4.2.3. The Replacement String
	4.2.4. Replacement with Multiple Lines
	4.2.5. Replacement within Replacement Strings

	4.3. Include Statement
	4.3.1. Filenames
	4.3.2. Standard Include Files

	4.4. AxisNames Statement

	CHAPTER 5: G-CODE COMMANDS
	5.1. Introduction
	5.1.1. Motion Types Available
	5.1.2. Motion Commands Available
	5.1.3. Prerequisites for Initiating Motion from the CNC
	5.1.4.Command vs. Actual
	5.1.5. Target Positions
	5.1.6. Simultaneous Movement of Multiple Axes
	5.1.7. Velocity
	5.1.8. Acceleration/Deceleration
	5.1.9. Further Information
	5.1.10. Modal
	5.1.11. Default

	5.2. CNC Block Syntax
	5.2.1. CNC Blocks
	5.2.2. N Words
	5.2.3. Motion Blocks
	5.2.3.1. Simple Mode Words
	5.2.3.2. F, E and S Codes (Rate Words)
	5.2.3.3. Motion Modifier Words
	5.2.3.4. Motion Type Words
	5.2.3.5. Offset Words

	5.2.4. Stand-Alone Blocks
	5.2.5. Parameter Setting Blocks
	5.2.5.1. F-code Parameter Blocks
	5.2.5.2. Mask Parameter Blocks
	5.2.5.3. Point Parameter Blocks

	5.3. Non-Contoured Motion (G0)
	5.3.1. Point-to-Point Positioning at a Rapid Feedrate (Motion) G0

	5.4. Contoured Motion (G1, G2, G3)
	5.4.1. Linear Interpolation (Motion) G1
	5.4.2. Circular Interpolation CW on Coordinate System #1 (Motion) G2
	5.4.3. Circular Interpolation CCW on Plane #1 (Motion) G3

	5.5. Dwell (G4)
	5.5.1. Dwell G4

	5.6. Velocity Blending (G8, G9, G108, G109)
	5.6.1. Instantaneous Acceleration G8
	5.6.2. Force Deceleration G9

	5.7. Contoured Motion on Coordinate System # 2 (G12, G13)
	5.7.1. Circular Interpolation CW on Coordinate System #2 (Motion) G12
	5.7.2. Circular Interpolation CCW on Coordinate System #2 G13

	5.8. Coordinate System #1 Configuration (G16 – G19)
	5.8.1. Assign Coordinate System #1 Axes G16
	5.8.2. Plane Selection Codes Set # 1 G17/G18/G19

	5.9. Normalcy Motion Overview (G20, G21, G22)
	5.9.1. Disable Normalcy Mode G20
	5.9.2. Activate Normalcy Mode Left G21
	5.9.3. Activate Normalcy Mode Right G22

	5.10. Corner Rounding (G23, G24) G23
	5.10.1. Disable Corner Rounding Mode G24

	5.11. Coordinate System #2 Configuration (G26 – G29)
	5.11.1. Assign Coordinate System #2 Axes G26
	5.11.2. Plane Selection Codes for Coordinate System #2 G27/G28/G29

	5.12. Software Limits Overview
	5.12.1. Configuring Software Limits

	5.13. Safe Zones (G34, G35, G36, G37)
	5.13.1. Set Safe Zone Minimum Values G34
	5.13.2. Set Safe Zone Maximum Values G35
	5.13.3. Enable Safe Zones G36
	5.13.4. Disable Safe Zones G37
	5.13.5. Safe Zone Activation
	5.13.6. Configuring and Using Safe Zones

	5.14. Backlash Compensation (G38, G39)
	5.14.1. Enable Backlash Compensation G38
	5.14.2. Disable Backlash Compensation G39

	5.15. Cutter Radius Compensation (G40, G41, G42, G43, G45)
	5.15.1. CNC Block Look-Ahead Requirements in Cutter Compensation Mode
	5.15.2. Cutter Radius Compensation Lead-On and Lead-Off Moves
	5.15.3. Interaction of Mirroring and Cutter Compensation Commands
	5.15.4. Cutter Compensation Limitations within Inside Corners
	5.15.5. Cutter Compensation within Outside Corners
	5.15.6. Deactivate Cutter Compensation (ICRC) G40
	5.15.7. Activate ICRC Left G41
	5.15.8. Activate ICRC Right G42
	5.15.9. Set Cutter Compensation Radius G43
	5.15.10. Set Cutter Compensation Axes G44

	5.16. Polar/Cylindrical Transformations (G45, G46, G47)
	5.16.1. Disable Polar or Cylindrical Coordinate Transformation G45
	5.16.2. Enable Polar Coordinate Transformation G46
	5.16.3. Enable Cylindrical Coordinate Transformation G47
	5.16.4. Monitor Touch Probe G51
	5.16.5. Define Polar/Cylindrical Transformation Axes G52

	5.17. Fixture Offsets (G53 – G59)
	5.17.1. Cancel Fixture Offset G53
	5.17.2. Set Fixture Offset #1 G54
	5.17.3. Set Fixture Offset #2 G55
	5.17.4. Set Fixture Offset #3 G56
	5.17.5. Set Fixture Offset #4 G57
	5.17.6. Set Fixture Offset #5 G58
	5.17.7. Set Fixture Offset #6 G59

	5.18. Contoured Accel/Decel Overview (G60, G61)
	5.18.1. Explicit Feedrates and Automatic Acceleration
	5.18.2. Set Acceleration Time G60
	5.18.3. Set Deceleration Time G61

	5.19. Profile Resolution Time (G62)
	5.19.1. Set Profile Time G62

	5.20. Accel/Decel Rates and Modes (G63 -> G68)
	5.20.1. Sinusoidal (1-Cosine) Accel/Decel Mode G63
	5.20.2. Linear Accel/Decel Mode G64
	5.20.3. Set Acceleration Rate (for linear type axes) G65
	5.20.4. Set Deceleration Rate (for linear type axes) G66
	5.20.5. Time Based Acceleration/Deceleration G67
	5.20.6. Rate Based Acceleration/Deceleration G68

	5.21. Metric/English Units (G70, G71)
	5.21.1. Inch Dimension Programming Mode (Units) G70
	5.21.2. Metric Dimension Programming Mode (Units) G71

	5.22. Restore Preset Position Registers G82
	5.23. Transformation Overview (G83, G84)
	5.23.1. Mirror Image G83
	5.23.2. Parts Rotation G84

	5.24. Positioning Modes (G90, G91)
	5.24.1. Absolute Dimension Programming Mode (Distance) G90
	5.24.2. Incremental Position Programming (Distance) G91

	5.25. Preset Positions (G92)
	5.25.1. Software Home (Set Preset Positions) G92

	5.26. Feedrate Modes (G93, G94, G95)
	5.26.1. Inverse Time Feedrate Programming (FeedrateMode) G93
	5.26.2. Feed Per Minute Feedrate Programming (FeedrateMode) G94
	5.26.3. Feed Per Spindle Revolution Feedrate Programming G95
	5.26.4. Surface Speed Spindle Feedrate Programming G96
	5.26.5. RPM Spindle Feedrate Programming G97

	5.27. Dominant Feedrate Overview (G98, G99)
	5.27.1. Rotary Feedrate Dominant G98
	5.27.2. Linear Feedrate Dominant G99

	5.28. Spindle Shutdown Modes (G100, G101)
	5.28.1. Disable Spindle Shutdown Mode G100
	5.28.2. Enable Spindle Shutdown Mode G101

	5.29. Modal Velocity Profiling (G108, G109)
	5.29.1. No Deceleration to Zero Velocity Between Moves G108
	5.29.2. Force Deceleration to Zero Velocity Between Moves G109

	5.30. Circular Direction Codes (G110, G111)
	5.30.1. Normal Circular Interpolation G110
	5.30.2. Inverse Circular Interpolation G111

	5.31. Block Delete Mode (G112, G113)
	5.31.1. Set Block Delete Mode G112
	5.31.2. Clear Block Delete Mode G113

	5.32. Optional Stop Mode (G114, G115)
	5.32.1. Set Optional Stop Mode G114
	5.32.2. Clear Optional Stop Mode G115

	5.33. Dry Run Mode (G116, G117)
	5.33.1. Dry Run Mode Enabled G116
	5.33.2. Dry Run Mode Disabled G117

	5.34. Servo Update Rate (G130, G131)
	5.34.1. 4 Kilohertz Servo Update Rate G130
	5.34.2. 1 Kilohertz Servo Update Rate G131

	5.35. Cutter Tool Offset Compensation Overview (G143, G144, G149)
	5.35.1. Activate Positive Cutter (Tool) Offsets G143
	5.35.2. Activate Negative Cutter (Tool) Offsets G144
	5.35.3. Deactivate Cutter (Tool) Offsets G149

	5.36. Scale Factor (G150, G151)
	5.36.1. Clear Scale Factor G150
	5.36.2. Set Scale Factor G151
	5.36.3. The Scaling Center

	5.37. Suspend All Fixture Offsets G153
	5.38. Rotary Axis Acceleration Rates (G165, G166)
	5.38.1. Set Acceleration Rate (for Rotary Type Axes) G165
	5.38.2. Set Deceleration Rate (for Rotary Type Axes) G166

	5.39. Block Delete2 Mode (G212, G213)
	5.39.1. Set Block Delete2 Mode G212
	5.39.2. Clear Block Delete2 Mode G213

	5.40. CNC Block Look-Ahead (G300, G301)
	5.40.1. Disable Multi-Block Look-Ahead G300
	5.40.2. Enable Multi-Block Look-Ahead G301
	5.40.3. CNC Block Look-Ahead Conditions that Force (G9) Deceleration
	5.40.4. CNC Block Look-Ahead Failures

	5.41. High Speed Machining (G310, G311)
	5.41.1. Disable High Speed Machining G310
	5.41.2. Enable High Speed Machining G311
	5.41.3. High Speed Machining Limitations
	5.41.4. Continue when Velocity command is Zero G360
	5.41.5. Wait till In-Position G361

	5.42. M-codes
	5.42.1. Program Stop M0
	5.42.2. Optional Stop M1
	5.42.3. End of Program M2
	5.42.4. Spindle On Clockwise M3, M23, M33, M43
	5.42.5. Spindle On Counterclockwise M4, M24, M34, M44
	5.42.6. Spindle Off M5, M25, M35, M45
	5.42.7. Spindle Off/Reorient M19, M219, M319, M419
	5.42.8. Restart Program Execution and Wait for Cycle Start M30
	5.42.9. Machine Lock Mode
	5.42.10. Machine Lock Enabled M41
	5.42.11. Machine Lock Disabled M42
	5.42.12. Restart Program Execution M47
	5.42.13. Feedrate Override Lock M48
	5.42.14. Feedrate Override Unlock M49
	5.42.15. Spindle Feedrate Override Lock M50
	5.42.16. Spindle Feedrate Override Unlock M51
	5.42.17. Loop over Near Call to Subroutine M97
	5.42.18. Loop over Far Call to Subroutine M98
	5.42.19. Spindle On Clockwise Asynchronously M103, M123, M133, M143
	5.42.20. Spindle On Counter-Clockwise Asynchronously M104, M124, M134, M144

	CHAPTER 6: EXTENDED COMMANDS
	6.1. Introduction
	6.2. Motion with Extended Commands
	6.3. Host vs. Axis Processor Based Commands
	6.3.1. Axis Processor Based Extended Commands
	6.3.2. Host Based Extended Commands
	6.3.2.1. Time-outs
	6.3.2.2. Error Returns from the CallBack Commands
	6.3.2.3. Return Values from the Callback Commands
	6.3.2.4. Parameters to a Callback Command

	6.4. RS-447 Extended Commands
	6.4.1. Auto Focus - AFCO
	6.4.2. ALIGN Command
	6.4.3. BIND Axis Command
	6.4.4. Call Subroutine Command CALL / CLS
	6.4.5. CallDLL Command
	6.4.6. Capture Axis
	6.4.7. CFGMASTER Command (Configure Master Axis)
	6.4.8. Change Axis Configuration from within a CNC Program
	6.4.9. COMMINIT
	6.4.10. COMMSETTIMEOUT
	6.4.11. Data Acquisition Start DATASTART
	6.4.12. Data Acquisition Stop DATASTOP
	6.4.13. Define Subroutine
	6.4.14. DISABLE Axes Command
	6.4.15. Displaying Text in the CDW Window DISPLAY
	6.4.16. Define Program Variable or Array DVAR
	6.4.16.1. Define Program Variable
	6.4.16.2. Define Program Array

	6.4.17. ENABLE Command
	6.4.18. End motion (Asynchronous) ENDM
	6.4.19. Execute DOS or Windows Program EXE
	6.4.20. EXECCANNEDFUNCTION Command
	6.4.21. Execute DOS or Windows Program and Wait for Completion
	6.4.22. FARCALL FARCALL / PGM / PRG
	6.4.23. Jump to program FARGOTO / FARJUMP
	6.4.24. FEDM Command
	6.4.25. File and Serial Port Command Overview
	6.4.25.1. File Close Command FILECLOSE
	6.4.25.2. File Existence Testing Command
	6.4.25.3. File Open Command FILEOPEN
	6.4.25.4. FILEREAD Command FILEREAD
	6.4.25.5. FILEREADINI Command
	6.4.25.6. File Write Command FILEWRITE
	6.4.25.7. FILEWRITEINI Command

	6.4.26. Free axes FREE
	6.4.27. FREECAMTABLE Command
	6.4.28. Goto to a CNC block GOTO / JUMP
	6.4.29. HANDWHEEL Command HAND / HANDWHEEL
	6.4.30. Home Command HOME / REF
	6.4.31. HOMEASYNC Command HOMEASYNC
	6.4.32. IF Command IF ... THEN ... ELSE ... ENDIF
	6.4.32.1. IF ... GOTO command
	6.4.32.2. IF ... THEN Command

	6.4.33. INDEX Command INDEX
	6.4.34. IsAvail, Axes Available Command
	6.4.35. Camming Motion Overview
	6.4.35.1. Axis Parameters Affecting Camming
	6.4.35.2. Axis Parameters Used To Monitor Camming Motion
	6.4.35.3. Camming Performance Tip
	6.4.35.4. Master Axis Selection
	6.4.35.5. Synchronizing Multiple Axes
	6.4.35.6. Camming Motion from a File
	6.4.35.7. Infeeding Overview
	6.4.35.8. Asynchronous Motion Commands
	6.4.35.9. Camming Example Program
	6.4.35.10. Cam Table Format
	6.4.35.11. Cam Table Format Example

	6.4.36. LOADCAMTABLE Command
	6.4.37. #MAKENCODESLABELS
	6.4.38. MAP Command MAP
	6.4.39. MaskToDouble Command
	6.4.40. MOVETO (Asynchronous Absolute Move) Command
	6.4.41. MSET Command
	6.4.42. MSGxxx Commands Overview
	6.4.42.1. MSGBOX Command
	6.4.42.1.1. ParameterLists and Format Specifiers

	6.4.42.2. MSGCLEAR Command
	6.4.42.3. MSGDISPLAY Command
	6.4.42.4. MSGHIDE Command
	6.4.42.5. MSGINPUT Command
	6.4.42.6. MSGLAMP# Command
	6.4.42.7. MSGMENU Command
	6.4.42.8. MSGSHOW Command
	6.4.42.9. MSGTASK Command

	6.4.43. ON command ON
	6.4.44. Conditional ONGOSUB Command ONGOSUB
	6.4.45. Oscillate Move Command OSC
	6.4.46. POPMODES Command
	6.4.47. PUSHMODES Command
	6.4.48. Initialize Touch Probe PROBE
	6.4.49. PROGRAMDOWNLOADFILE Command
	6.4.50. PROGRAMEXECUTE Command
	6.4.51. PROGRAMEXECUTEFILE Command
	6.4.52. PROGRAMTASKRESET Command
	6.4.53. PROGRAMUNLOAD Command
	6.4.54. PSO Card Based Commands
	6.4.54.1. Configuring the PSO-PC Card to Fire a Laser

	6.4.55. Position Synchronized Output Firing Distance Entry PSOD
	6.4.55.1. Mode Argument for PSOD Command
	6.4.55.2. Pulse Output at an Incremental Distance PSOD 0
	6.4.55.3. Fire Equidistantly PSOD 7
	6.4.55.4. Offset Firing Pulse PSOD 8

	6.4.56 Enable/Disable Position Synchronized Output Firing PSOF
	6.4.56.1. Mode Arguments for PSOF
	6.4.56.2. Disable Laser Output Pulse PSOF 0
	6.4.56.3. Laser Output Fires Continuously PSOF1
	6.4.56.4. Fire Laser a Specified Number of Times PSOF 2
	6.4.56.5 Laser Output Synchronized with Position PSOF 3

	6.4.57. Position Synchronized Output Pulse Configuration PSOP
	6.4.57.1. Mode Arguments for PSOP
	6.4.57.2. Simple Single Pulse PSOP 0
	6.4.57.3. Single Pulse with Lead, Width and Trail PSOP 1
	6.4.57.4. Level based Laser Control
	6.4.57.5. Simple One-shot Pulse PSOP 4

	6.4.58. Position Synchronized Output Scaling PSOS
	6.4.58.1. Disabling Scaling PSOS 0
	6.4.58.2. Enable Scaling PSOS 1
	6.4.58.3. Define PSO Axes Scaling PSOS 2

	6.4.59 Digital/Analog Output Command PSOT
	6.4.59.1. MODE Argument for PSOT
	6.4.59.2. Set Individual Output State PSOT 0
	6.4.59.3. Set Analog Outputs to Discrete Values PSOT 2
	6.4.59.4. Velocity Ramping PSOT 4
	6.4.59.5. Position Ramping PSOT 6
	6.4.59.6. PSOT 4 velocity Argument
	6.4.59.7. PSOT 6 position Argument

	6.4.60. Release Command
	6.4.61. Repeat Loop REPEAT / RPT
	6.4.62. Canned Function Overview
	6.4.62.1. SETCANNEDFUNCTION Command
	6.4.62.2. Disabling Canned Functions
	6.4.62.2.1. Calling a Subroutine from another Task
	6.4.62.2.2. Calling Subroutines from the Manual I/O keys
	6.4.62.2.3. An easier to use ONGOSUB, or monitor Command
	6.4.62.2.4. Implementing Canned Cycles

	6.4.63. Return from Subroutine/Program RETURN
	6.4.63.1. RETURN from an ONGOSUB Command

	6.4.64. SetParm Command
	6.4.65. Slew Command SLEW
	6.4.66. Start Motion (STRM) Command STRM
	6.4.67. String Functions
	6.4.67.1. STRLEN
	6.4.67.2. STRCMP
	6.4.67.3. STRFIND
	6.4.67.4. STRCHAR
	6.4.67.5. STRTODBL
	6.4.67.6. STRTOASCII
	6.4.67.7. STRUPR
	6.4.67.8. STRLWR
	6.4.67.9. DBLTOSTR
	6.4.67.10. STRMID

	6.4.68. SYNC Command SYNC
	6.4.69. Track Command
	6.4.70. VOLCOMP Command
	6.4.71. Wait Command WAIT
	6.4.72. Conditional Looping WHILE / WHL

	CHAPTER 7: CUSTOM COMMANDS
	7.1. Introduction
	7.2. Custom M-codes (Using Defines)
	7.2.1. Custom M-Code Tips

	7.3. Custom G-codes (Using Calls)
	7.3.1. Custom G-Code Tips

	7.4. Custom Commands (Using Callback Commands)

	APPENDIX A: GLOSSARY OF TERMS
	A.1. Introduction

	APPENDIX B: WARRANTY AND FIELD SERVICE B
	INDEX
	READER’S COMMENTS

