

PRO560SL and SLE Mechanical Bearing, Ball-Screw Stage

HARDWARE MANUAL

Revision 2.00

GLOBAL TECHNICAL SUPPORT

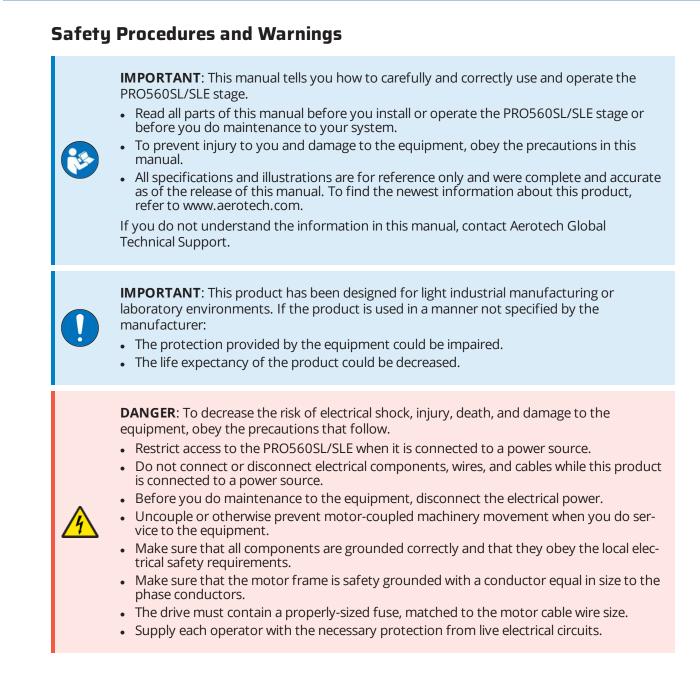
Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

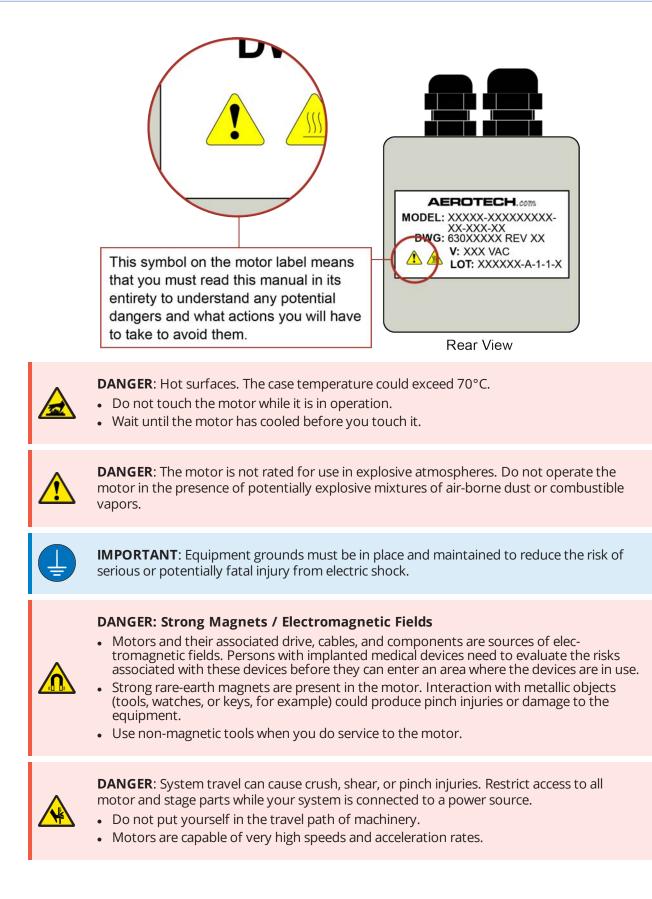
This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2010-2021, Aerotech, Inc., All rights reserved.

Table of Contents

PRO560SL and SLE Mechanical Bearing, Ball-Screw Stage Table of Contents List of Figures List of Tables Safety Procedures and Warnings EU Declaration of Incorporation	3 4 5 7
Chapter 1: Overview 1.1. Environmental Specifications 1.2. Accuracy and Temperature Effects 1.3. Basic Specifications 1.4. Vacuum Operation	15 15 16
Chapter 2: Installation 2.1. Unpacking and Handling the Stage 2.2. Dimensions 2.3. Securing the Stage to the Mounting Surface 2.4. Attaching the Payload to the Stage	19 21 24
Chapter 3: Electrical Installation 3.1. Motor and Feedback Connectors 3.2. Motor and Feedback Wiring 3.3. Motor and Feedback Specifications 3.4. Limits, Marker, and Machine Direction 3.5. Motor and Feedback Phasing	30 34 36 40
Chapter 4: Maintenance 4.1. Service and Inspection Schedule 4.2. Cleaning and Lubrication 4.3. Motor Mounting 4.4. Belt Adjustment 4.5. Troubleshooting	43 44 48 51
Appendix A: Warranty and Field Service	55
Appendix A: Warranty and Field Service	


List of Figures


Figure 2-1:	Lifting Features	0
Figure 2-2:	PRO560SL Dimensions	1
Figure 2-3:	PRO560SLE Dimensions	2
Figure 2-4:	Tabletop Accessory Dimensions (-TT3 Option)	3
Figure 2-5:	Stage Orientations	6
Figure 2-6:	Cantilevered Load Capability	6
Figure 2-7:	Load Torque Equation	7
Figure 2-8:	Torque Required to Turn Ball Screw in Vertical Orientation	7
Figure 3-1:	Brushless Motor and Feedback Wiring [-SL Option]	4
Figure 3-2:	Brushless Motor and Feedback Wiring [-SLE Option]	5
Figure 3-3:	Machine Direction	0
Figure 3-4:	Hall Phasing Diagram	1
Figure 3-5:	Encoder Phasing Reference Diagram (Standard/Square Wave)	2
Figure 3-6:	Encoder Phasing Reference Diagram (Analog/Sine Wave)	2
Figure 4-1:	Hardcover Rear End Plate Removal	6
Figure 4-2:	Hardcover Screw Removal	6
Figure 4-3:	Hardcover Removal	7
Figure 4-4:	Motor Mounting Overview	8
Figure 4-5:	Attach the Coupling Adapter to the Motor Shaft	9
Figure 4-6:	Attach the Motor the Stage	9
Figure 4-7:	Tighten the Shaft Coupling to the Drive Screw	0
Figure 4-8:	Foldback Motor Cover Removal5	2
Figure 4-9:	Foldback Motor Part Callouts	3
Figure 4-10:	Lubricate the Pulley Flanges	3

List of Tables

Table 1-1:	Model Numbers and Ordering Options	13
Table 1-2:	Environmental Specifications	
Table 1-3:	PRO560SL/SLE Series Specifications (-0300 to -0500)	16
Table 1-4:	PRO560SL/SLE Series Specifications (-0600 to -1000)	17
Table 2-1:	Stage Mounting Surface Flatness Requirement	24
Table 2-2:	Stage to Mounting Surface Hardware	24
Table 3-1:	Brushless Motor Connector Pinout	31
Table 3-2:	Mating Connector Part Numbers for the Brushless Motor Connector	31
Table 3-3:	Brushless Motor Feedback Connector Pinout	
Table 3-4:	Mating Connector Part Numbers for the Brushless Motor Feedback Connector	31
Table 3-5:	Linear Encoder Connector Pinout (-SLE only)	32
Table 3-6:	Mating Connector Part Numbers for the Encoder Connector	32
Table 3-7:	Limit Connector Wiring	33
Table 3-8:	Mating Connector Part Numbers for the Limit Connector	33
Table 3-9:	Hall-Effect Sensor Specifications (BM or BMS Motor Options)	36
Table 3-10:	Thermistor Specifications (BMS Motor Options)	36
Table 3-11:	Encoder Specifications	
Table 3-12:	Limit Switch Specifications	
Table 3-13:	Brake Specifications	36
Table 3-14:	PRO560SL/SLE Motor Specifications (BMS465)	37
Table 3-15:	PRO560SL/SLE Motor Specifications (BM500)	38
Table 3-16:	Rotary Encoder Specifications for PRO560SL/SLE Stages	39
Table 3-17:	Linear Encoder Specifications for PRO560SL/SLEE Stages	39
Table 4-1:	Hardware Requirements	48

This page intentionally left blank.

WARNING: To decrease the risk of damage to the equipment, you must obey the precautions that follow

- Only trained operators should operate this equipment.
- All service and maintenance must be done by approved personnel.
- Use this product only in environments and operating conditions that are approved in this manual.
- Never install or operate equipment that appears to be damaged.
- On stages with BMS motors: the motor over-temperature sensor must be monitored by the drive. Use it to shut down the drive if the motor overheats.
- Make sure that the product is securely mounted before you operate it.
- Use care when you move the PRO560SL/SLE or you could negatively affect the performance of it.

WARNING: Securely mount and position all system cables.

This page intentionally left blank.

EU Declaration of Incorporation

Manufactu	ırer
-----------	------

Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA

herewith declares that the product:

PRO560SL/SLE Linear Stage

is intended to be incorporated into machinery to constitute machinery covered by the Directive 2006/42/EC as amended;

and that the following harmonized European standards have been applied:

EN ISO 12100:2010 Safety of machinery - Basic concepts, general principles for design EN 60204-1:2010 Safety of machinery - Electrical equipment of machines - Part 1: General requirements

and further more declares that

it is not allowed to put the equipment into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Directive 2006/42/EC and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

6/8/2021

2011/65/EU EU 2015/863 RoHS 2 Directive Amendment RoHS 3 Directive

Authorized Representative

Engineer Verifying Compliance

Date

hannal

/ Simon Smith, European Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK

(llow link end) / Alex Weibel Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA

CE

This page intentionally left blank.

Chapter 1: Overview

The specifications in this manual pertain to the second generation of PRO SL/SLE stages. Second generation stages can be distinguished from their first generation counterparts by the curved hardcover on the second generation. Contact Aerotech if you need a first generation manual.

Table 1-1: Mo	del Numbers and Ordering Options
	RO560SLE Series Linear Ball-Screw Stage
Direct Linear Fee	edback (-SLE only)
-E1	Incremental linear encoder; 1 Vpp
-E2	Incremental linear encoder; 0.1 µm digital RS422 output
-E3	Absolute linear encoder; EnDat 2.2
-E4	Incremental linear encoder; 0.5 μm digital RS422 output
Travel (Required)
-0300	300 mm travel stage
-0400	400 mm travel stage
-0500	500 mm travel stage
-0600	600 mm travel stage
-0800	800 mm travel stage
-1000	1000 mm travel stage
Mounting Orient	
	Normal mounting orientation
-MT1	Side-mounted or vertical orientation
-MT2	Inverted mounting orientation
	nal for SL Stages; Required for SLE Stages)
-TT1	Tabletop with metric dimension mounting
-TT2	Tabletop with English dimension mounting
-TT3	Accessory tabletop with mounting for select rotary stages
-TT4	Tabletop with metric dimension mounting and wiper brushes
-TT5	Tabletop with English dimension mounting and wiper brushes
-TT6	Accessory tabletop with mounting pattern for select rotary stages and wipers
Motor (Optional)	
-M1	BMS465 brushless servomotor and 2500-Line digital RS422 encoder
-M2	BMS465 brushless servomotor, 2500-Line digital RS422 encoder, and brake
-M3	BMS465 brushless servomotor and 1000-Line 1 Vpp encoder
-M4	BMS465 brushless servomotor, 1000-Line 1 Vpp encoder, and brake
-M5	BM500 brushless servomotor, 2500-Line 1 Vpp encoder, and brake
-M6	BM500 brushless servomotor, 2500-Line digital RS422 encoder, and brake
-M7	BM500 brushless servomotor and 1000-Line 1 Vpp encoder
-M8	BM500 brushless servomotor, 1000-Line 1 Vpp encoder, and brake

Table 1-1: Model Numbers and Ordering Options

PRO560SL and PR	CO560SLE Series Linear Ball-Screw Stage (continued)
Foldback (Option	al)
-FB1	Foldback kit for 1/2" diameter shaft NEMA 34 motor
Motor Orientation	n (Optional)
-2	Bottom cable exit, optional orientation
-3	Left-side cable exit, standard orientation
-4	Top cable exit, optional orientation
-5	Right-side cable exit, optional orientation
-8	Right-side foldback, standard orientation
-12	Left-side foldback, optional orientation
Limits (Required)	
-LI1	Normally-closed limit switches; 5 VDC with 9-pin D connector
-LI2	Normally-open limit switches; 5 VDC with 9-pin D connector
-LI3	Normally-closed limit switches; 24 VDC with 9-pin D connector
Coupling (Option	
-CP1	Coupling for 1/2" diameter shaft
Lifting Hardware	
-LF	Lifting hardware
	available on all travels
ThermoComp™ (O	
-TCMP	ThermoComp™ integrated thermal compensation unit, single or lower axis
	an Automation1 or A3200 controller with the -TCMP option.
Metrology (Require	
-PLO	No metrology performance plots
-PL1	Uncalibrated with performance plots
-PL2	Calibrated with performance plots
	e Ordered as a Separate Line Item)
ALIGN-NPA	Non-precision XY assembly
ALIGN-PA10	XY assembly; 10 arc sec orthogonality; alignment to within 7 μm orthogonality for short travel stages
ALIGN-PA5	XY assembly; 5 arc sec orthogonality; alignment to within 3 μm orthogonality for short travel stages

1.1. Environmental Specifications

WARNING: Do not expose this product to environments or conditions outside of the listed specifications. You could damage the equipment if you exceed the environmental or operating specifications.

Fable 1-2: Environmental Specifications					
Ambient	Operating: 10° to 35° C (50° to 95° F)				
Temperature	The optimal operating temperature is 20° C \pm 2° C (68° F \pm 4° F). If at any time the				
operating temperature deviates from 20° C degradation in performan occur.					
	Storage: 0° to 40° C (32° to 104° F) in original shipping packaging				
Humidity	Operating: 20% to 60% RH				
	Storage: 10% to 70% RH, non-condensing in original packaging.				
	The stage should be packaged with desiccant if it is to be stored for an extended				
	time.				
Altitude Operating: 0 m to 2,000 m (0 ft to 6,562 ft) above sea level					
	Contact Aerotech if your specific application involves use above 2,000 m or below sea level.				
Vibration	Use the system in a low vibration environment. Excessive floor or acoustical				
	vibration can affect system performance. Contact Aerotech for information				
Ductosticu	regarding your specific application.				
Protection	The PRO560SL/SLE stages have limited protection against dust, but not water. This				
Rating	equates to an ingress protection rating of IP50.				
Use	Indoor use only				

1.2. Accuracy and Temperature Effects

The accuracy specification of series stages is measured 25 mm above the table with the stage in an unloaded condition. The stage is assumed to be fully supported by a mounting surface meeting or exceeding the specification in Section 2.3.

The accuracy of the screw is a key element in the overall positioning accuracy of the SL stage. A scale error can be expected if temperature of the screw differs from 20° C (68° F). The greater the temperature difference, the greater the error. The temperature of the screw depends on the speed and duty cycle of the stage. The faster the movement and higher the duty cycle, the more the stage accuracy will be affected by heat. The thermal expansion coefficient of the screw is 11.7 ppm/°C.

SLE stages contain a linear encoder for direct feedback of the carriage position. The stage travel as seen by the linear encoder will expand at the rate of 3.25 ppm/°C as the temperature of the encoder scale deviates from 20°C.

The ThermoComp[™] option is a hardware and software solution that uses the functionality of the Automation1 or A3200 controller to mitigate the effects of changing temperature by detecting and compensating for thermal changes. ThermoComp[™] is effective at compensating for both self-heating and environmental temperature changes.

1.3. Basic Specifications

Resolution is dependent on screw pitch, encoder resolution, and controller interpolation.

Table 1-3: PRO560SL/SLE Series Specifications (-0300 to -0500)

			-0300	-0400	-0500
Travel			300 mm	400 mm	500 mm
	SL	Standard	±9.5 μm	±11 μm	±13 μm
Accuracy ⁽¹⁾	SL	Calibrated	±1.5 μm	±1.5 μm	±2 μm
Accuracy	SLE	Standard	±10 μm	±12 μm	±14 μm
	JLL	Calibrated	±1 μm	±1 μm	±1.5 μm
Resolution (Minimum	SL			0.1 μm ⁽²⁾ , 1.0 μm ⁽³⁾	
Incremental Motion)	SLE		0.05 µm (-E1/-E3 e	ncoder), 0.2 µm (-E2 er encoder)	lcoder), 1.0 μm (-E4
Bidirectional	SL			±1 μm	
Repeatability ⁽¹⁾	SLE			±0.5 μm	
Horizontal Straight	ness ⁽¹⁾		±3 μm	±4 μm	±5 μm
Vertical Straightnes	ss ⁽¹⁾		±3 μm	±4 μm	±5 μm
Ditab			49 µrad	60 µrad	70 µrad
Pitch			(10.1 arc·sec)	(12.4 arc·sec)	(14.4 arc·sec)
		39 µrad	44 µrad	53 µrad	
Roll			(8.0 arc·sec)	(9.1 arc·sec)	(10.9 arc·sec)
Yaw			49 µrad	60 µrad	70 µrad
			(10.1 arc·sec)	(12.4 arc·sec)	(14.4 arc·sec)
Maximum Speed ⁽⁴⁾				220 mm/s	
Maximum Accelera	ition ⁽⁴⁾		Function of motor, a	amplifier, payload, and	maximum axial load
	Horizo	ontal	150 kg		
Load Capacity ⁽⁵⁾	Vertic	al (Axial)	70 kg		
Side		150 kg			
Moving Mass	SL		24.6 kg		
(with tabletop)	SLE		24.8 kg		
Stage Mass	SL		63.7 kg	68.6 kg	73.5 kg
(no motor)	SLE		65.5 kg	70.7 kg	75.9 kg
Material			Anodized Aluminum		
Mean Time Before	Failure (MTBF)	20,000 Hours		
1. Certified with -PL1	and -PI 2	option.			

1. Certified with -PL1 and -PL2 option.

2. Achieved with Aerotech rotary motor with amplified sine encoder.

3. Achieved with Aerotech rotary motor with 2500 counts/rev digital encoder.

4. Requires the selection of an applicable amplifier with sufficient voltage and current.

5. Axis orientation for on-axis loading is listed.

6. Specifications are for single-axis systems measured 25 mm above the tabletop; performance of multi-axis system is payload and workpoint dependent. Consult the Aerotech factory for multi-axis or non-standard applications.

7. Specifications listed are non-foldback kit options. Contact the factory for specifications when a foldback kit (-FBx) is used.

Table 1-4:	PRO560SL/SLE Series Specifications (-0600 to -1000)
------------	---

			-0600	-0800	-1000
Travel			600 mm	800 mm	1000 mm
	SL	Standard	±15 μm	±17 μm	±18 μm
Accuracy ⁽¹⁾	SL	Calibrated	±2 μm	±2.5 μm	±3 μm
Accuracy	SLE	Standard	±15.5 μm	±17 μm	±18 μm
	SLE	Calibrated	±1.5 μm	±1.5 μm	±1.5 μm
Resolution (Minimum	SL			0.1 μm ⁽²⁾ , 1.0 μm ⁽³⁾	
Incremental Motion)	SLE		0.05 µm (-E1/-E3 e	ncoder), 0.2 µm (-E2 er encoder)	lcoder), 1.0 μm (-E4
Bidirectional	SL			±1 μm	
Repeatability ⁽¹⁾	SLE		±0.5 μm	±0.75 μm	±0.75 μm
Horizontal Straight	ness ⁽¹⁾		±6 μm	±7 μm	±8.5 μm
Vertical Straightnes	ss ⁽¹⁾		±6 μm	±7 μm	±8.5 μm
Divil			78 µrad	90 µrad	110 µrad
Pitch		(16.1 arc·sec)	(18.6 arc·sec)	(22.7 arc·sec)	
Roll		58 µrad	73 µrad	87 µrad	
RUII			(12.0 arc·sec)	(15.1 arc·sec)	(17.9 arc·sec)
Yaw			78 µrad	90 µrad	110 µrad
			(16.1 arc·sec)	(18.6 arc·sec)	(22.7 arc·sec)
Maximum Speed ⁽⁴⁾ 220 mm/s			220 mm/s	140 mm/s	
Maximum Acceleration ⁽⁴⁾		Function of motor, a	amplifier, payload, and	maximum axial loa	
	Horizo	ontal	150 kg		
Load Capacity ⁽⁵⁾	Vertical (Axial)		70 kg		
	Side			150 kg	
Moving Mass	SL		24.6 kg		
(with tabletop)	SLE			24.8 kg	
Stage Mass	SL		78.4 kg	88.2 kg	98.0 kg
(no motor)	SLE		81.0 kg	91.4 kg	101.8 kg
Material			Anodized Aluminum		
Mean Time Before				20,000 Hours	
1. Certified with -PL1	and -PL2	option.			

2. Achieved with Aerotech rotary motor with amplified sine encoder.

3. Achieved with Aerotech rotary motor with 2500 counts/rev digital encoder.

4. Requires the selection of an applicable amplifier with sufficient voltage and current.

5. Axis orientation for on-axis loading is listed.

6. Specifications are for single-axis systems measured 25 mm above the tabletop; performance of multi-axis system is payload and workpoint dependent. Consult the Aerotech factory for multi-axis or non-standard applications.

7. Specifications listed are non-foldback kit options. Contact the factory for specifications when a foldback kit (-FBx) is used.

1.4. Vacuum Operation

There are two vacuum preparation options:

- Low Vacuum (for use in atmospheric pressures to 10⁻³ Torr)
- High Vacuum (preparation for environments from 10⁻³ to 10⁻⁶ Torr).

Special preparations include:

- Parts are lubricated with vacuum-compatible lubricants.
- Materials, fasteners, and coatings with vacuum outgas performance are ensured to be compatible with the specified level of vacuum.
- For high vacuum systems, situations that may allow gases to become temporarily trapped during pump down are removed.
- Prior to assembly, stage parts are thoroughly cleaned in a clean environment.
- The stage is packaged in a special polyethylene bag.

Vacuum Guidelines

To ensure that the stage will continue to perform well in the vacuum environment, follow the guidelines listed below (in addition to standard handling, installation, and lubrication guidelines outlined in this manual).

- 1. Do not remove the stage from its sealed bag until it is ready for use.
- 2. Always handle the stage in a clean environment and use powder-free polyethylene gloves to prevent any contaminants from adhering to the surface of the stage.
- 3. During installation, use cleaned, vented, stainless steel fasteners to secure the stage.
- 4. Reduced air pressure eliminates significant convective heat transfer. This, coupled with the viscous vacuum-compatible lubricants, could result in excessive motor operating temperatures. Because of this, consider all continuous torque ratings to be 40 to 60% lower than the value specified for operation in normal atmospheric environment. Reduce motor usage accordingly.
- 5. We recommend that you use a small quantity of Braycote® 602EF grease or a compatible substitute of equal quality lubricant in vacuum applications.
- 6. Bake vacuum components at 60 °C for 24 to 48 hours to significantly reduce outgassing at initial pump-down to vacuum pressure and evaporate water vapor that impregnates porous surfaces on the aluminum and Teflon cables. Aerotech recommends that customers bake out vacuum systems when first installing them in the vacuum chamber. Contact Aerotech to discuss your application and the recommended bakeout procedure.

Chapter 2: Installation

WARNING: PRO560SL/SLE installation must be in accordance to instructions provided by this manual and any accompanying documentation. Failure to follow these instructions could result in injury or damage to the equipment.

2.1. Unpacking and Handling the Stage

WARNING: **HEAVY!** It is the responsibility of the customer to safely and carefully lift and move the PRO560SL/SLE.

- Refer to Section 1.3. for stage mass specifications. Do not attempt to lift heavy loads single handed.
- Use care when you move the PRO560SL/SLE or you could negatively affect the performance of it.
- Lift this product only by the base.
- Use a cart, dolly, or similar device to move the stage to a new location.
- For multi-axis assemblies, always lift the system by the lower axis.
- Do not use the cables or the connectors to lift or move this product.
- Make sure that all moving parts are secure before you move the PRO560SL/SLE. Unsecured moving parts could shift and cause injury or damage to the equipment.

Carefully remove the stage from its protective shipping container. Gently set the stage on a smooth, flat, and clean surface. Use compressed nitrogen or clean, dry, oil-free air to remove any dust or debris that has collected during shipping.

Before you operate the stage, let it stabilize at room temperature for at least 12 hours. This will ensure that all of the alignments, preloads, and tolerances are the same as they were when they were tested at Aerotech.

Each stage has a label listing the system part number and serial number. These numbers contain information necessary for maintenance or system hardware and software updates. Locate this label and record the information for later reference.

Lifting Features

The lifting kit includes four eyebolts and four standoffs. Thread the eyebolts onto the standoffs and thread the standoffs into the stage base. Remove the lifting hardware by turning a wrench on the flats of the standoffs (see Figure 2-1). If the stage is part of a multi-axis system, the lifting hardware should be attached to the lower axis. The lifting hardware must be removed before the stage can be operated.

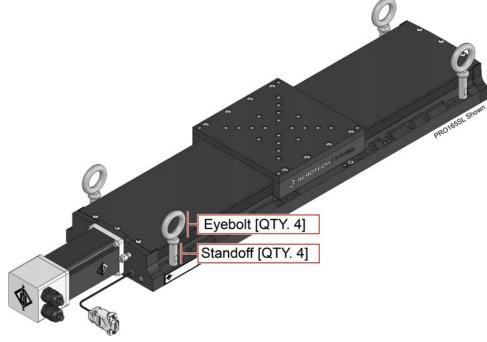


Figure 2-1: Lifting Features

2.2. Dimensions

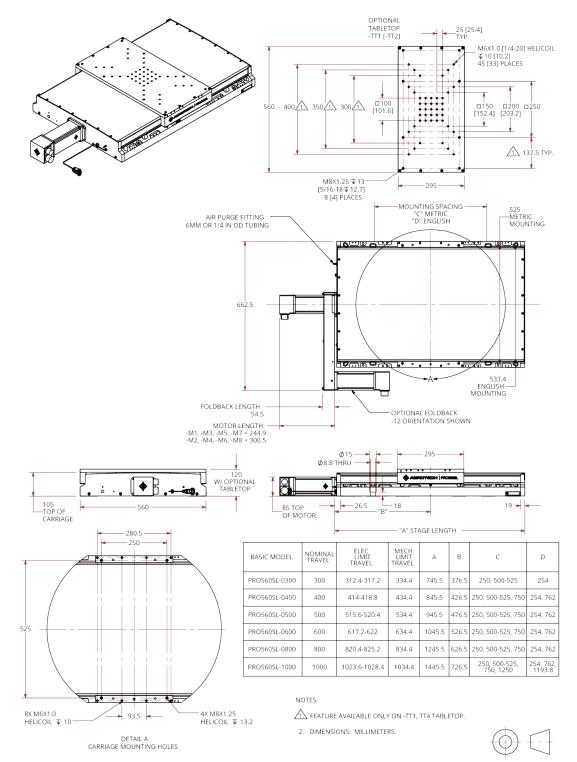
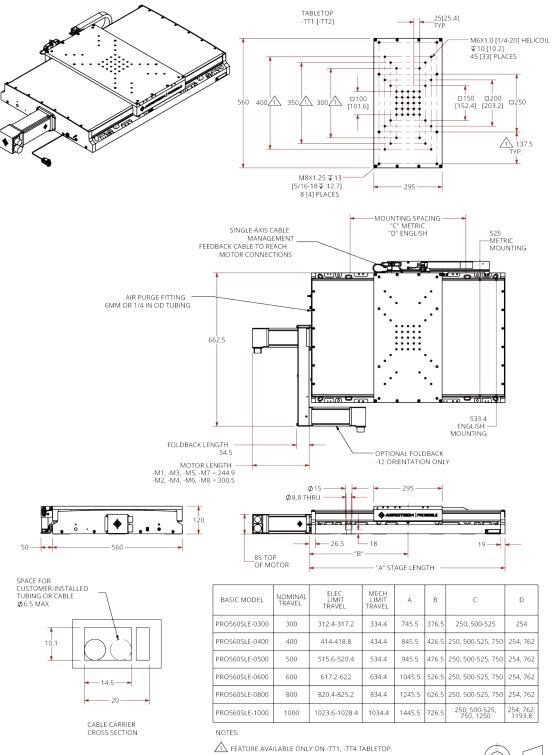



Figure 2-2: PRO560SL Dimensions

2. DIMENSIONS: MILLIMETERS.

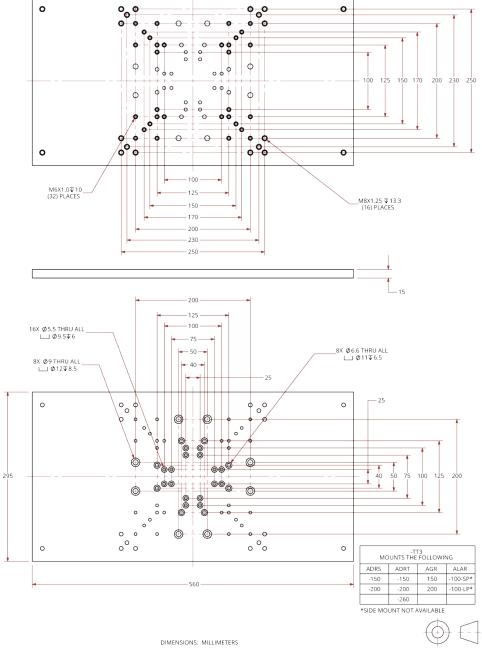


Figure 2-4: Tabletop Accessory Dimensions (-TT3 Option)

2.3. Securing the Stage to the Mounting Surface

WARNING: The stage must be mounted securely. Improper mounting can result in injury and damage to the equipment.

DANGER: PINCH POINT! Keep Hands Clear while the stage is in motion. Make sure that all moving parts are secure before you move the PRO560SL/SLE. Unsecured moving parts could shift and cause injury or damage to the equipment.

The mounting surface must be flat and have adequate stiffness to achieve the maximum performance from the stage. When it is mounted to a non-flat surface, the stage can be distorted while the mounting screws are tightened. This distortion will decrease overall accuracy. Adjustments to the mounting surface must be done before the stage is secured.

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Use precision flatstones on the mounting surface to remove any burrs or high spots. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

IMPORTANT: The PRO560SL/SLE is precision machined and verified for flatness prior to product assembly at the factory. If machining is required to achieve the desired flatness, it should be performed on the mounting surface rather than the stage. Shimming should be avoided if possible. If shimming is required, it should be minimized to retain maximum rigidity of the system.

Table 2-1: Stage Mounting Surface Flatness Requirement

	0	0	•	
Stage Travel				Flatness Requirement
All Travels				7.5 µm

If necessary, manually move the stage table to access the mounting holes along the edges of the stage. This stage is designed to use socket head cap screws (SHCS) to secure the base to the mounting surface.

IMPORTANT: The stage table may offer a considerable amount of resistance when it is moved manually.

• If the stage is not connected to a power source, the stage should move freely by hand.

• Do not attempt to manually move the stage if it is connected to a power source or includes an integrated brake.

Tightening torque values for the mounting hardware are dependent on the properties of the surface to which the stage is being mounted. Values provided in Table 2-2 are typical values and may not be accurate for your mounting surface. Refer to Section 2.2. for mounting locations and dimensions.

Table 2-2: Stage to Mounting Surface Hardware

Mounting Hardware	Typical Screw Torque
M8 x 30 mm (or 5/16" x 1-1/8") SHCS with flat washers	16.8 N·m [12 ft·lb]

2.4. Attaching the Payload to the Stage

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

Use a representative payload during start-up to prevent accidental damage to the stage and the payload. Proceed with the electrical installation and test the motion control system in accordance with the system documentation. Document all results for future reference. For information on electrical installation refer to Chapter 3: Electrical Installation and the documentation delivered with the stage.

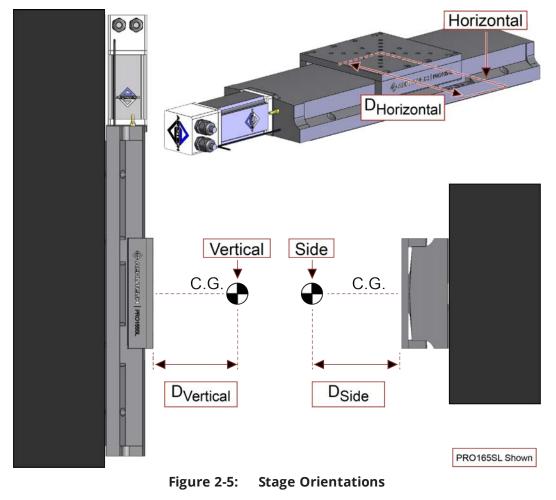
IMPORTANT: If your PRO560SL/SLE was purchased with Aerotech controls, it could have been tuned with a representative payload based on the information provided at the time of order. If you start the PRO560SL/SLE without a payload, the servo gains provided by Aerotech with the shipment may not be appropriate and servo instability can occur. Refer to the controller help file for tuning assistance.

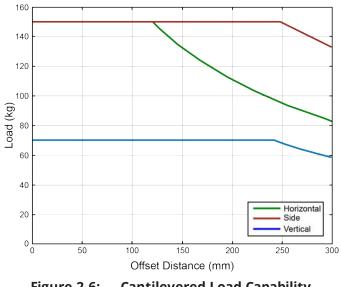
The payload must be flat, rigid, and comparable to the stage in quality to maintain optimum performance.

IMPORTANT: For valid system performance, the mounting interface should be flat within 12 μ m.

WARNING: If the screw extends through the stage table it could affect travel and damage the stage. Refer to the dimensions in Section 2.2. for maximum allowable thread engagement.

Applied loads should be symmetrically distributed whenever possible. The payload should be centered on the stage table and the entire stage should be centered on the support structure.


For a cantilevered load, first determine if it is a **Vertical**, **Horizontal**, or a **Side** cantilever system (refer to Figure 2-5).


The **Vertical** curve is for situations where the stage is mounted in a vertical orientation and the payload is mounted to the table top with its center of gravity extended outward in a direction normal to the tabletop surface. Refer to Figure 2-7 or Figure 2-8 for torque requirements on a vertical orientation.

The **Horizontal** curve assumes a horizontal stage orientation with the payload offset extending outwards along the surface of the tabletop.

The **Side** curve is for situations where the stage is mounted on its side and the offset load extends outwards in a direction normal to the tabletop surface.

Measure the cantilever length, then find the corresponding load value from Figure 2-6.

Cantilevered Load Capability Figure 2-6:

The approximate amount of torque required to turn the ball screw of PRO560SL/SLE series stages can be found from Figure 2-8 or the following equation:

 $Torque_{REQ} = \frac{(AxialLoad) \times (LeadofScrew)}{2 \times \pi \times (Efficiency)}$

Figure 2-7: Load Torque Equation

For PRO560SL/SLE series stages, the ball screw efficiency is rated at 90% (0.90). Refer to Section 1.3. for Load Capacity specifications.

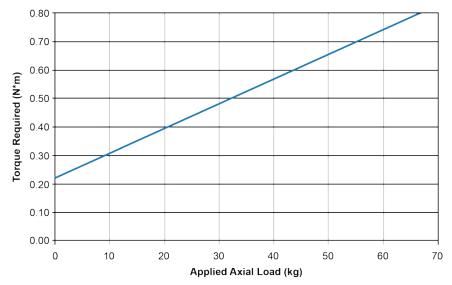


Figure 2-8: Torque Required to Turn Ball Screw in Vertical Orientation

This page intentionally left blank.

Chapter 3: Electrical Installation

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- Restrict access to the PRO560SL/SLE when it is connected to a power source.
- Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- Before you do maintenance to the equipment, disconnect the electrical power.
- Uncouple or otherwise prevent motor-coupled machinery movement when you do service to the equipment.
- Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- Make sure that the motor frame is safety grounded with a conductor equal in size to the phase conductors.
- The drive must contain a properly-sized fuse, matched to the motor cable wire size.
- Supply each operator with the necessary protection from live electrical circuits.

WARNING: Applications that require access to the PRO560SL/SLE must be restricted to qualified and trained personnel. The system integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements when they integrate the PRO560SL/SLE into a completed system.

Electrical installation requirements will depend on the ordered product options. Installation instructions in this section are for Aerotech stages equipped with standard Aerotech motors intended for use with an Aerotech motion control system. Contact Aerotech for further information on products that are otherwise configured.

Aerotech motion control systems are adjusted at the factory for optimum performance. When the PRO560SL/SLE is part of a complete Aerotech motion control system, setup should only require that you connect the stage to the appropriate drive chassis with the cables provided. Labels on the system components should indicate the appropriate connections.

If system level integration was purchased, an electrical drawing that shows the system interconnects has been supplied with the system (separate from this documentation).

The electrical wiring from the motor and encoder are integrated at the factory. Refer to the sections that follow for standard motor wiring and connector pinouts.

3.1. Motor and Feedback Connectors

Stages equipped with standard motors and encoders come from the factory completely wired and assembled.

IMPORTANT: Refer to the other documentation accompanying your Aerotech equipment. Call your Aerotech representative if there are any questions on system configuration.

IMPORTANT: If you are using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

The protective ground connection of the PRO560SL/SLE provides motor frame ground protection only. Additional grounding and safety precautions are required for applications requiring access to the stage while it is energized. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

DANGER: The protective ground connection must be properly installed to minimize the possibility of electric shock.

DANGER: The stage controller must provide over-current and over-speed protection. Failure to do so could cause electric shock or damage to the equipment.

Table 3-1: Brushless Motor Connector Pinout

Pin	Description	Connector
А	Motor Phase A	
В	Motor Phase B	
С	Motor Phase C	
D	Frame Ground (motor protective ground)	C B
Backshell	Motor Cable Shield	P/N: MS3101A18-10P

Table 3-2: Mating Connector Part Numbers for the Brushless Motor Connector

Aerotech P/N	Third Party P/N
MCM00475	Amphenol MS3106A18
MCM00495	Amphenol 9718-10S
MCM00481	DDK MS3055-18-10
MCM00477	Amphenol MS3057A-10
	MCM00475 MCM00495 MCM00481

Table 3-3: Brushless Motor Feedback Connector Pinout

Pin	Description	Connector		
Case	Shield Connection			
А	COS+ (Encoder Cosine+)			
В	COS- (Encoder Cosine-)			
С	SIN+ (Encoder Sine+)			
D	SIN- (Encoder Sine-)			
E	MRK+ (Encoder Marker+)			
F	MRK- (Encoder Marker-)			
G	Common ground			
Н	5V Power Supply Input			
J	Reserved			
K	Hall Effect Sensor (Phase A)	S S S S S S S S S S S S S S S S S S S		
1	BMS Motors: Over-Temperature Thermistor Sensor ⁽¹⁾			
L	BM Motors: Reserved			
М	Hall Effect Sensor (Phase B)	H O _G		
Ν	Reserved			
Р	Hall Effect Sensor (Phase C)	P/N: MS3102R20-29P		
R	Reserved			
S	Reserved			
5	Brake + (with Brake Option) ⁽¹⁾			
т	- Reserved			
-	Brake - (with Brake Option) ⁽¹⁾			
(1) 24 VD	IC @ 1 A max			

Table 3-4: Mating Connector Part Numbers for the Brushless Motor Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
Plug	MCM00454	Amphenol MS3106A-20
Insert	MCM00464	Amphenol MS20-29S
Clamp	MCM00457	97-3057-1012
Bushing	MCM00493	Amphenol AN3055-22-12
Note: All parts are nickel-plated		

Pin	-E1, -E2, and -E4 Encoder Option	-E3 Encoder Option	Connector
Case	Shield Connection	Shield Connection	
1	Reserved	Reserved	
2	Reserved	Reserved	
3	+5 V power supply	+5 V power supply	
4	Reserved	Reserved	
5	Reserved	Reserved	
6	Marker-N	Clock -	$\left(\right)$
7	Marker	Clock +	
8	Reserved	Data -	14 •1
9	Reserved	Reserved	° •
10	Reserved	Reserved	•
11	Reserved	Reserved	• •
12	Reserved	Reserved	°
13	Reserved	Reserved	•
14	Cosine	Reserved	° •
15	Cosine-N	Reserved	.
16	+5 V power supply	+5 V power supply	• •
17	Sine	Reserved	[●] ₂₅ •13
18	Sine-N	Reserved	
19	Reserved	Data +	\bigcirc
20	Common ground	Common ground	
21	Common ground	Common ground	
22	Reserved	Reserved	
23	Reserved	Reserved	
24	Reserved	Reserved	
25	Reserved	Reserved	

Table 3-6: Mating Connector Part Numbers for the Encoder Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Socket D-Connector	ECK00300	FCI DB25S064TLF
Backshell	ECK00656	Amphenol 17E-1726-2

Table 3-7: Limit Connector Wiring

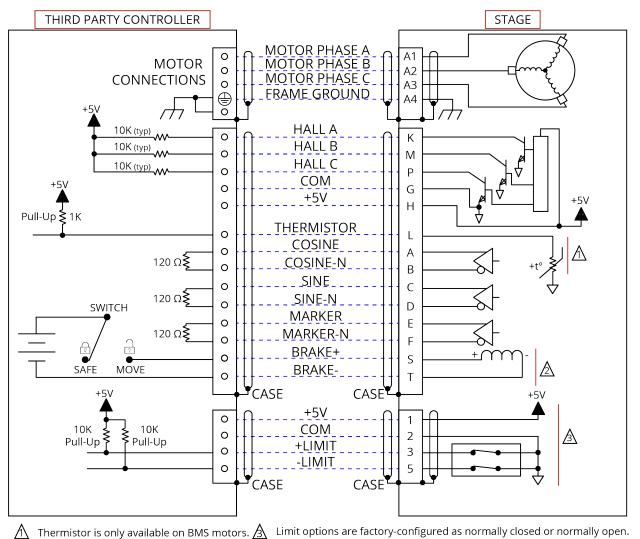
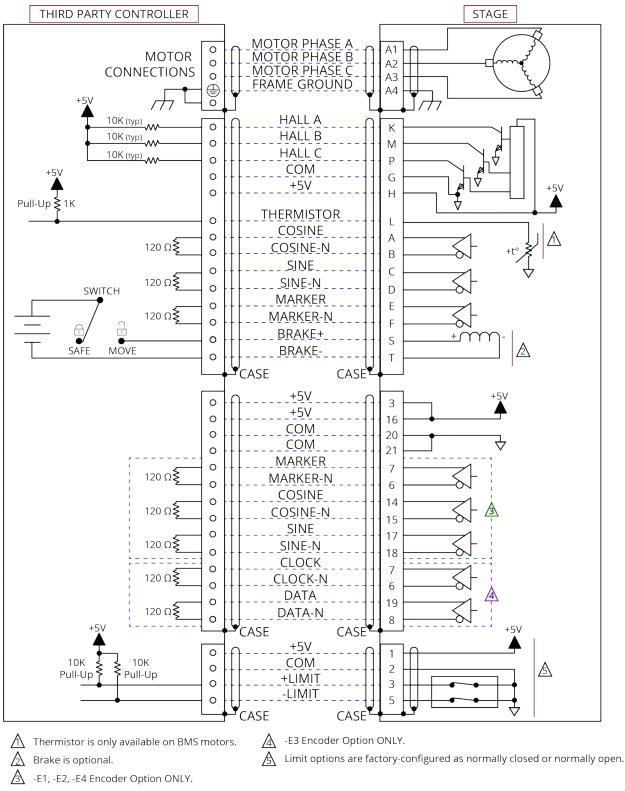
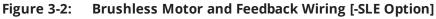

Pin	Description	Limits Connector
Case	Shield Connection	
1	-LI1/-LI2 Option:5V Power Supply Limit Input	
I	-LI3 Option: 24V Power Supply Limit Input	
2	Limit Common	Feedback
3	+Limit/CW (Positive/Clockwise Travel Limit)	
4	Home Limit	
5	-Limit/CCW (Negative/Counterclockwise Limit)	9 • 5
6	Reserved	
7	Common ground	Limits
8	Reserved	
9	Reserved	

Table 3-8: Mating Connector Part Numbers for the Limit Connector

Mating Connector	Aerotech P/N	Third Party P/N
9-Pin D-Connector	ECK00340	FCI DE09S064TLF
Backshell	ECK01021	Amphenol 17E-1724-2


3.2. Motor and Feedback Wiring


Shielded cables are required for the motor and feedback connections.

A Brake is optional.

Figure 3-1: Brushless Motor and Feedback Wiring [-SL Option]

3.3. Motor and Feedback Specifications

Table 3-9: Hall-Effect Sensor Specifications (BM or BMS Motor Options)

	Specification
Supply Voltage	5 V ±5%
Supply Current	50 mA
Output Type	Open Collector
Output Voltage	24 V max (pull up)
Output Current	5 mA (sinking)

Table 3-10: Thermistor Specifications (BMS Motor Options)

	Specification
Polarity	Logic "0" (no fault)
FoldTity	Logic "1" (over-temperature fault)
Cold Resistance	~100 Ω
Hot Resistance	~10 K
Note: 1K pull-up to +5V recommended.	

Table 3-11: Encoder Specifications

	Specification	
Supply Voltage	5 V ±5%	
Supply Current	250 mA Typical	
Output Cignele	Sinusoidal Type (Incremental Encoder) : 1 V_{pk-pk} into 120 Ω Load (differential signals SIN+, SIN-, COS+, COS- are .5 V $_{pk-pk}$ relative to ground.)	
Output Signals	Digital Output (Incremental Encoder): RS422/485 compatible	
	Serial Output (Absolute Encoder): EnDat 2.2 with 36 bit word	

Table 3-12: Limit Switch Specifications

	-LI1 Option	-LI2 Option	-LI3 Option
Supply Voltage	5 V	5 V	24 V
Supply Current	25 mA		
Output Type	Open Collector		
Output Voltage	5 V	5 V	24 V
Output Current	10 mA (sinking)	10 mA (sinking)	10 mA (sourcing)
	Normally Closed (NC)	Normally Open (NO)	Normally Closed (NC)
Output Polarity (Factory Configured)	 Sinks current to ground (Logic "0") when not in limit High impedance (Logic "1") when in limit Requires external pull- up to +5 V (10 kΩ recommended) 	 Sinks current to ground (Logic "0") when in limit High impedance (Logic "1") when not in limit Requires external pull- up to +5 V (10 kΩ recommended) 	 24 V output when not in limit High impedance when in limit
Note: If the PRO560SL/SLE	is driven beyond the electrical l	imit, it will encounter a mechar	nical stop. Impacting the

mechanical stop could cause damage to the stage even at low speeds.

Table 3-13: Brake Specifications

	Specification	
Supply Voltage	24 VDC	
Supply Current (typical)	Current (typical) 500 mA Typical (current required to release the brake and allow motion)	

Table 3-14:PRO560SL/SLE Motor Specifications (BMS465)

		BMS465
Performance Specifications ^(1, 5)		
Stall Torque, Continuous ⁽²⁾	N·m (oz∙in)	2.86 (404.8)
Peak Torque ⁽³⁾	N·m (oz∙in)	11.43 (1619.2)
Rated Power Output, Continuous	W	457
Electrical Specifications ⁽⁵⁾		
Winding Designation		-A
BEMF Constant (Line-Line, Max)	V _{pk} /k _{rpm}	79.0
Continuous Current, Stall ⁽²⁾	A _{pk} (A _{rms})	4.9 (3.5)
Peak Current, Stall ⁽³⁾	A _{pk} (A _{rms})	19.6 (13.9)
Torque Constant ^(4, 8)	N·m/A _{pk} (oz·in/A _{pk})	0.580 (82.60)
Torque Constant (27-27	N·m/A _{rms} (oz∙in/A _{rms})	0.820 (116.80)
Motor Constant ^(2, 4)	N·m/√W (oz·in/√W)	0.280 (39.70)
Resistance, 25°C (Line-Line)	Ω	4.40
Inductance (Line-Line)	mH	0.87
Maximum Bus Voltage	V _{DC}	340
Thermal Resistance	°C/W	0.72
Number of Poles		14

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature

2. Values shown @ 75°C rise above a 25 °C ambient temperature, with housed motor mounted to a 250 mm x 250 mm x 6 mm aluminum heat sink

3. Peak torque assumes correct rms current; consult Aerotech

4. Force constant and motor constant specified at stall

5. All performance and electrical specifications $\pm 10\%$

6. Maximum winding temperature is 100 °C (thermistor trips at 100 °C)

7. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures

8. All Aerotech amplifiers are rated Apk; use torque constant in N·m/Apk when sizing

Table 3-15: PRO560SL/SLE Motor Specifications (BM500)

		BM500
Performance Specifications ^(1,2)		
Stall Torque, Continuous ⁽³⁾	N·m (oz·in)	3.60 (515.0)
Peak Torque ⁽⁴⁾	N·m (oz·in)	9.10 (1286.0)
Rated Power Output, Continuous	W	1065
Electrical Specifications ⁽²⁾		
BEMF Constant (Line-Line, Max)	V _{pk} /k _{rpm}	29.0
Continuous Current, Stall ⁽³⁾	A _{pk} (A _{rms})	17.5 (12.4)
Peak Current, Stall ⁽⁴⁾	A _{pk} (A _{rms})	43.8 (30.9)
Torque Constant ⁽⁵⁾	N·m/A _{pk}	0.210
	(oz∙in/A _{pk})	(29.40)
	N⋅m/A _{rms}	0.290
	(oz∙in/A _{rms})	(41.60)
Motor Constant ^(3,5)	N·m/√W	0.287
	(oz∙in/√W)	(40.69)
Resistance, 25°C (Line-Line)	Ω	0.50
Inductance (Line-Line)	mH	1.42
Maximum Bus Voltage	V _{DC}	340
Thermal Resistance	°C/W	0.61
Number of Poles		8

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature

2. All performance and electrical specifications ±10%

3. Values shown @ 105°C rise above a 25 °C ambient temperature, with housed motor mounted to a 250 mm x 250 mm x 6 mm aluminum heat sink

4. Peak torque assumes correct rms current; consult Aerotech

5. Torque constant and motor constant specified at stall

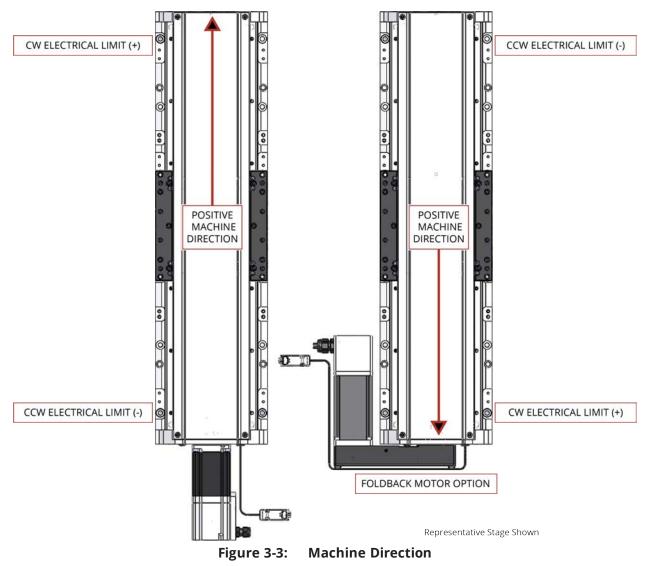
6. Maximum winding temperature is 130 °C

7. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures

8. All Aerotech amplifiers are rated A_{pk} use torque constant in N·m/A_{\text{pk}} when sizing

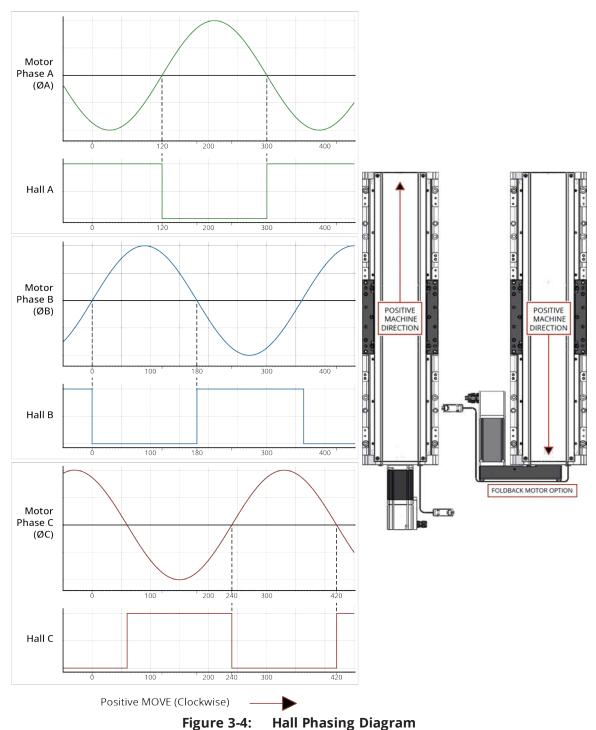
Table 3-16: Rotary Encoder Specifications for PRO560SL/SLE Stages

Encoder Option	Fundamental Signal Period	Digital Resolution
-M1, -M2, -M5, -M6	2 µm	0.5 µm
(2500 line TTL signal)	2 μπ	0.5 µm
-M3, -M4, -M7, -M8	5 µm	
(1000 line 1Vpp Amplified Sine signal)	5 μπ	
-M3, -M4, -M7, -M8 with 1000x Interpolation ⁽¹⁾ (1000 line 1Vpp Amplified Sine signal)	5 µm	5 nm
-M3, -M4, -M7, -M8 with 4000x Interpolation ⁽¹⁾ (1000 line 1Vpp Amplified Sine signal)	5 µm	1.25 nm
1. Quadrature decoding included in interpolated resolu	tion calculations	


Table 3-17: Linear Encoder Specifications for PRO560SL/SLEE Stages

Encoder Option	Fundamental Signal Period	Digital Resolution
-E1	20 µm	
-E1 with x4000 Interpolation ⁽¹⁾	20 µm	5 nm
-E1 with x16000 Interpolation ⁽¹⁾	20 µm	1.25 nm
-E2	20 µm	100 nm
-E3		1 nm
-E4	20 µm	0.5 μm
1. Quadrature decoding included in interpolated	resolution calculations	

3.4. Limits, Marker, and Machine Direction


Aerotech stages are configured to have positive and negative "machine" directions. The machine direction defines the phasing of the feedback and motor signals and is dictated by the stage wiring (refer to Section 3.2.). Programming direction of a stage is set by the controller that is used to move the stage. Programming direction is typically selectable in the controller, while machine direction is hardwired in the stage. Figure 3-3 shows the machine direction of PRO560SL/SLE stages.

The home marker is located near the center of travel on stages with a linear encoder (SLE models). For stages without the linear encoder option (SL models), the marker is located in the rotary motor and will be triggered near the designated home limit.

3.5. Motor and Feedback Phasing

Motor phase voltage is measured relative to the virtual wye common point.

COS-N

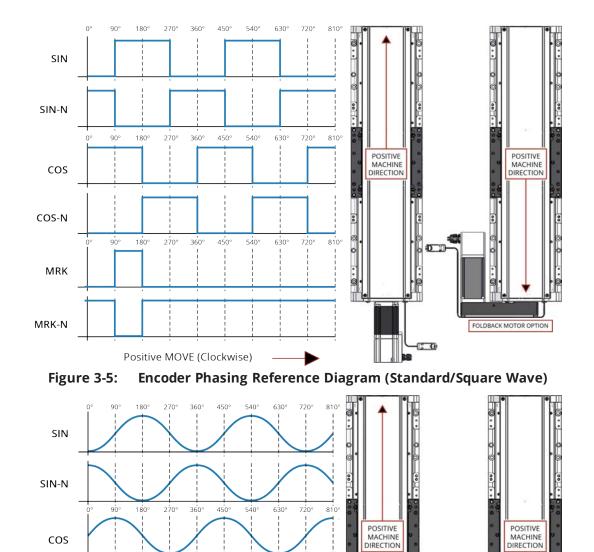
MRK

MRK-N

90° 180°

270° 360°

315


Positive MOVE (Clockwise)

450°

540°

630° 720° 810

675°

00

0000

FOLDBACK MOTOR OPTION

0

Chapter 4: Maintenance

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- Before you do maintenance to the equipment, disconnect the electrical power.
- Uncouple or otherwise prevent motor-coupled machinery movement when you do service to the equipment.

IMPORTANT: Keep the bearing area free of foreign matter and moisture or the performance and life expectancy of the stage will be reduced.

4.1. Service and Inspection Schedule

Inspect the PRO560SL/SLE at least once per month. The need for a longer or shorter inspection interval will depend on the application and conditions, such as the duty cycle, speed, and environment.

Monthly inspections should include but not be limited to:

- Visually inspect the stage and cables.
- Re-tighten loose connectors.
- Replace or repair damaged cables.
- Clean the PRO560SL/SLE and any components and cables as needed.
- Repair any damage before operating the PRO560SL/SLE.
- Inspect and perform an operational check on all safeguards and protective devices.

4.2. Cleaning and Lubrication

DANGER: Before you do maintenance to the equipment, disconnect the electrical power.

In general, if the stage operates in a clean environment, it should be cleaned and lubricated annually or every 500 km (whichever comes first). For stages that are operated under conditions with excessive debris, the stage should be cleaned every six months. For high-speed applications (those near max speed at a duty cycle of 50%), more frequent maintenance with standard lubricants will be required.

When you clean and/or lubricate components of the PRO560SL/SLE series stage:

- 1. Be sure to use a clean, dry, soft, lint-free cloth for cleaning.
- 2. Before you use a cleaning solvent on any part of the stage, blow away small particles and dust with clean, dry, compressed air.
- 3. Take the opportunity during the lubrication procedure to inspect the motion guides or bearings for any damage or signs of wear.
- 4. In applications that have multiple stages bolted together to form multi-axis systems, the orthogonality may be lost if the stage tables of the support stages are loosened. Precision aligned stages should not be loosened or disassembled.
- 5. We recommend that you do not disassemble the stage beyond the instructions given in this manual. Proper assembly and calibration can only be done at the factory. Contact Aerotech for more information.

For stages equipped with foldback motors, you should check the belt tension when you clean or lubricate the stage. Refer to Section 4.4.

Cleaning

Use isopropyl alcohol if you must use a solvent to clean the stage. Harsher solvents, such as acetone, could damage the plastic and rubber seals on the ball screw and bearing trucks.

WARNING: Make sure that all solvent has completely evaporated before you move the stage.

Lubrication

You should only use Kluberplex BEM 34-132 as the standard lubricant for PRO560SL/SLE **second generation** stages. Second generation stages can be distinguished from first generation stages by the curved hardcover on the second generation stage.

IMPORTANT: **First Generation** stages were manufactured with THK AFE-CA grease as the standard lubricant. THK AFE-CA grease is not chemically compatible with Kluberplex BEM 34-132 and the two should not be used interchangeably. First generation stages in the field should continue to use THK AFE-CA grease for regular maintenance lubrication.

If the application process uses only a small portion of travel for most of the duty cycle, periodically drive the stage through full travel to redistribute the lubrication in the bearings.

IMPORTANT: During the lubrication procedure, inspect the bearings and ball screw for any damage or signs of wear.

DANGER: Use extreme caution when you operate the stage without the hardcover.

- 1. Drive the stage table to one end of travel and remove power to the stage.
- 2. Remove the cover attached to the rear end plate on the side opposite of the motor (Figure 4-1).
- 3. Remove the hardcover screws (Figure 4-2).
- 4. Carefully slide the hardcover away from the stage (Figure 4-3). This can be done without removing the table.
- 5. Remove any accumulated dust or debris from the inside of the assembly.
- 6. Remove any dirty or dried lubricant from the ball screw.
- Use a clean, lint-free cloth with a side-to-side motion.
- Use a swab soaked in Isopropyl Alcohol to remove stubborn debris.
- 7. Move the stage to the opposite end of travel. If the stage has an optional brake, the stage cannot be moved by hand.
- If the stage has a brake: restore power to the stage, drive it to the desired position, then remove power
- Redo Steps 5 and 6 for any areas covered by the previous table position.
- 8. Clean the end of the ball-screw nut and wiper with a clean, lint-free cloth or swab.
- 9. Clean the linear bearing guides with a clean, lint-free cloth or swab.
- 10. Apply a thin, continuous film of lubricant to the ball-screw threads and linear bearing guides. Aerotech recommends that you use a good quality, natural bristle artist's brush.
- 11. Move the stage to the opposite end of travel. If the stage has an optional brake, the stage cannot be moved by hand.
 - If the stage has a brake: restore power to the stage, drive it to the desired position, then remove power.
- Redo Steps 8 through 10 for any areas covered by the previous table position.
- 12. Refasten the hardcover. First Generation Stages **Only**: Torque the hardcover screws to 36 42 in-lbs to ensure proper support.

IMPORTANT: For GEN II PRO series stages with travel lengths greater than or equal to 800 mm. The hardcover mounting surfaces in the stage end plates have been machined in such a way as to negate the natural sag due to gravity of the hardcover. As the mounting screws are tightened, the cover gently conforms to the shape of the end plates. Ensure that the cover is fully seated on the end plate mounting surfaces before you operate the stage. Check each mounting screw for full engagement by tightening the screw while holding the long side of a standard hex wrench.

13. Restore power to the stage and drive the stage table back to its original position to redistribute lubricants.

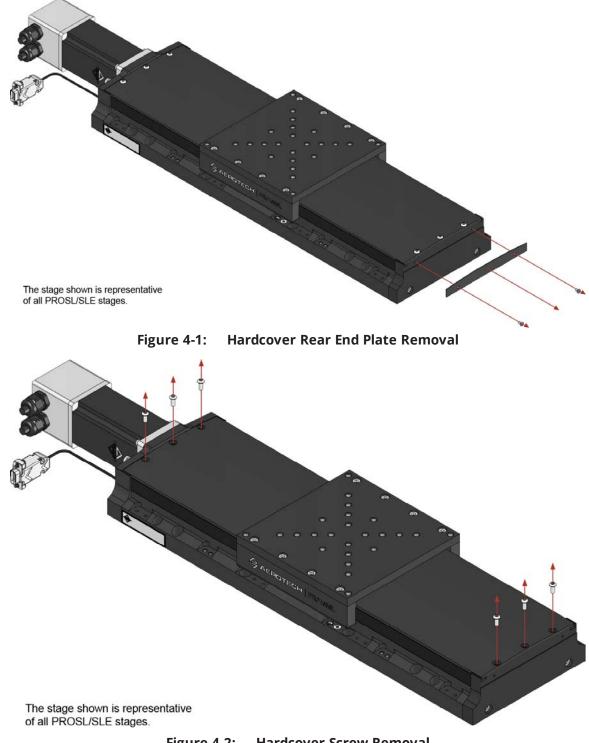
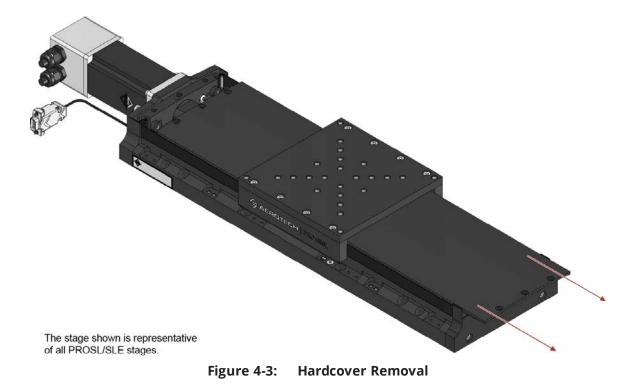



Figure 4-2: Hardcover Screw Removal

4.3. Motor Mounting

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- Before you do maintenance to the equipment, disconnect the electrical power.
- Uncouple or otherwise prevent motor-coupled machinery movement when you do service to the equipment.

Table 4-1:Hardware Requirements

Stage	Motor	Shaft Coupling	Coupling Screw	Coupling Screw
	Screw Size	Screw Size	Bit Size	Torque
PRO560SL/SLE	M5	M4	3 mm Hex	44 in·lbs

IMPORTANT: Use Loctite 242 or Loctite 248 on the motor and coupling adapter hardware (Figure 4-4). Loctite products are printed with an expiration date. Before use, be sure that the expiration date is legible and the product has not expired.

If your stage is used in a vacuum or cleanroom environment, contact Aerotech.

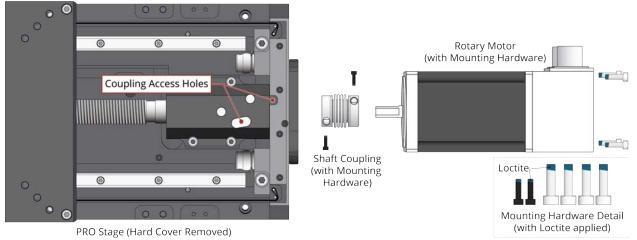


Figure 4-4: Motor Mounting Overview

How to Mount a Motor

- 1. Remove the hard cover from the stage.
- 2. Locate the Shaft Coupling access holes (refer to Figure 4-4).
- 3. Test fit the Motor and Shaft Coupling to the Stage to ensure that you have access to the Shaft Coupling clamp screws.
- 4. Apply a small quantity of either Loctite 242 or Loctite 248 to motor and coupling hardware.
- 5. Attach the Shaft Coupling to the Motor shaft (refer to Figure 4-5). Refer to Table 4-1 for the correct hardware and torque requirements.

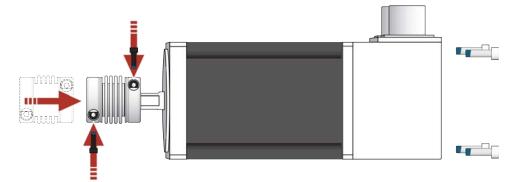


Figure 4-5: Attach the Coupling Adapter to the Motor Shaft

6. Attach the Motor to the Stage in the correct orientation (Figure 4-6). Use a hex wrench to ensure that the motor flange is fully seated and the hardware is tight. The motor housing prevents the use of a torque wrench.

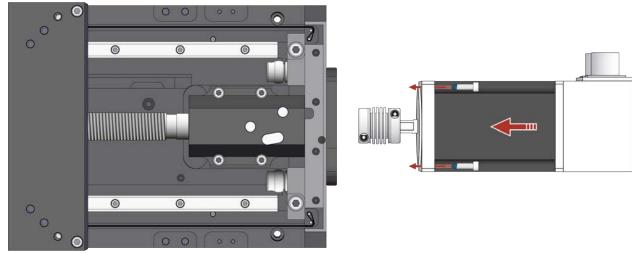


Figure 4-6: Attach the Motor the Stage

7. Tighten the Shaft Coupling to the drive screw (Figure 4-7). Refer to Table 4-1 for the correct hardware and torque requirements.

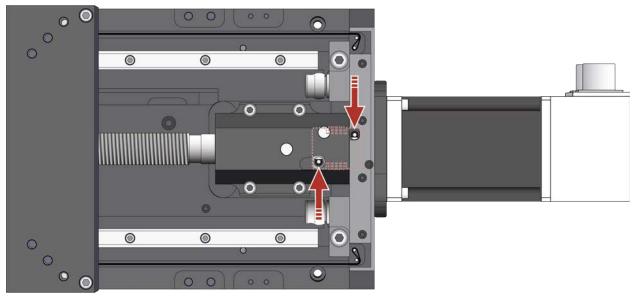
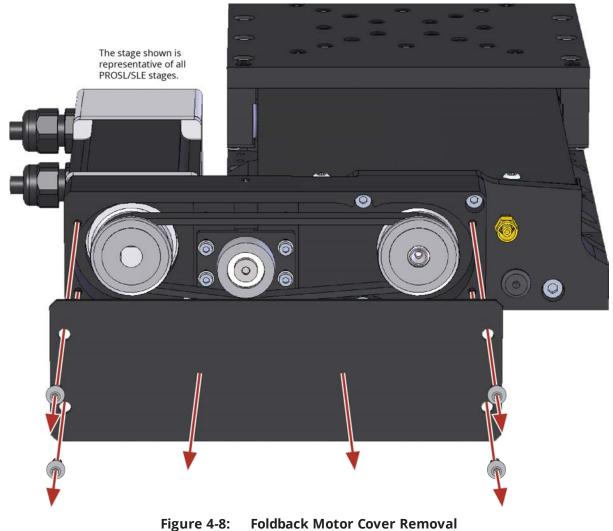


Figure 4-7: Tighten the Shaft Coupling to the Drive Screw

8. Rotate the drive screw by hand to ensure that the drive screw rotates freely.

IMPORTANT: You must reapply Loctite to the mounting hardware if the Motor or Shaft Coupling screws are removed, adjusted, loosened, or replaced.

4.4. Belt Adjustment


This section applies to stages equipped with foldback motor options. On foldback stages, the motor torque is transferred to the ball screw via a timing belt. Belt tension is critical to stage performance and accuracy.

Check the belt tension when you clean or lubricate the stage. Deflection in the belt should be within $\pm 10\%$ of 6.5 mm when applying a 30 N downward force directly between the pulleys. If the deflection exceeds this value, you will need to adjust the belt tension.

You will also need to apply lubricant to the inside flanges of the pulleys if the flanges are dry. The flanges should have a thin film of lubricant to reduce belt wear as the belt contacts the flanges. Use Parker Super O-Lube (silicone-based) for standard polyurethane belts.

Belt Tension Adjustment Procedure

- 1. Remove power to the stage.
- 2. Remove the four mounting screws for the foldback cover (Figure 4-8).
- 3. Check that the pulleys are tight on their respective shafts (Figure 4-9).
 - a. Each pulley is held in position with two set screws.
 - b. Ensure that the set screws are tight and centered over the shaft flats.
- 4. Check the tension in the belt to determine if adjustment is necessary.
- 5. If adjustment is required, loosen (but do not remove) the mounting screws for the idler pulley mounting bracket.
- 6. Remove the M4 set screw to gain access to the tapped hole above the idler pulley mounting bracket.
- 7. Insert an M4 screw or threaded stud long enough to contact the idler pulley mounting bracket.
- 8. Use the threaded stud to drive the idler pulley mounting bracket downward and increase belt tension.
- 9. Tighten the mounting screws for the idler pulley mounting bracket.
- 10. Measure the belt deflection again and repeat the previous steps until the belt tension adjustment is complete.
- 11. Check the pulley flanges for lubrication.
- 12. Add small amounts of Parker Super O-Lube lubricant around the circumference of both pulley flanges (Figure 4-10).
- 13. Replace the foldback cover and mounting screws.
- 14. Restore power to the stage and resume normal use.

IMPORTANT: If the stage has been calibrated (-PL2 option), note the orientation of the two pulleys with regard to each other or recalibration might be required.

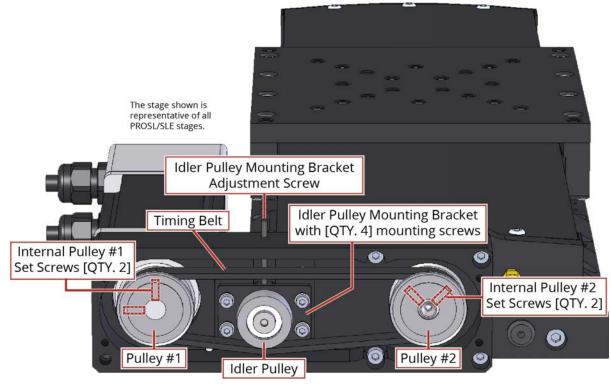


Figure 4-9: **Foldback Motor Part Callouts**

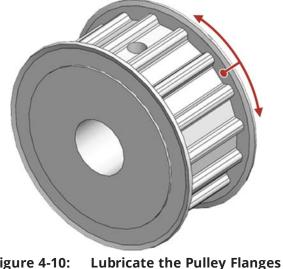


Figure 4-10:

4.5. Troubleshooting

Symptom	Possible Cause and Solution
	Brake not released (if equipped with brake; refer to stage documentation).
Stage will not move	In Limit condition. Check limits (refer to Chapter 3: Electrical Installation) and refer to the Controller documentation for polarity and compatibility requirements (Example: voltage requirements).
	Controller trap or fault (refer to the Controller documentation).
Stage moves	Encoder (sine and cosine) signal connections (refer to Chapter 3: Electrical Installation and Controller documentation).
uncontrollably	Motor Connections (refer to Chapter 3: Electrical Installation and the Controller documentation).
Stage oscillates or	Gains misadjusted (refer to the Controller documentation).
squeals	Encoder signals (refer to the Controller documentation).

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO Aerotech, Inc. Global Headquarters

TAIWAN Aerotech Taiwan Full-Service Subsidiary **CHINA** Aerotech China Full-Service Subsidiary

UNITED KINGDOM Aerotech United Kingdom Full-Service Subsidiary **GERMANY** Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
	Updates have been made to:
2.00	Section 1.3. Basic Specifications
	Section 4.3. Motor Mounting
1.07	
1.06	
1.05	
1.04	Revision changes have been archived. If you need a copy of this revision, contact
1.03	Aerotech Global Technical Support.
1.02	
1.01	
1.00	

This page intentionally left blank.

Index

		F	
2		foldback	51
2006/42/EC	11		
2011/65/EU	11	G	
		grease	18
А			
Accuracy and Temperature Effects	15	н	
Accuracy of the Ballscrew	15	Hall-Effect Sensors Specifications	36
acetone (caution)	44	Humidity	15
Altitude	15		
Ambient Temperature	15	I	
Attaching the Payload	25	Inspection Schedule	43
		isopropyl alcohol	44
В			
Belt Adjustment	51	L	
belt tension	51	label	19
Belt Tension Adjustment Procedure	51	Lifting Features	20
BM500 Motor Specifications	38	Limit Switch Specifications	36
BMS465 Motor Specifications	37	Linear Encoder Specifications	39
Brake Specifications	36	lubricant	
Braycote® 602EF	18	vacuum	18
		Lubrication	44
C			
cleaning		Μ	
mounting surface	24-25	mounting surface	
Cleaning	44	cleaning	24-25
cleaning solvent	44	securing stage	24
		MS3101A18-10P	31
D		MS3102R20-29P	31
Dimensions	21	multiaxis combinations	44
Directive 2006/42/EC	11		
		Р	
E		part number	19
Electrical Installation	29	Possible Cause	54
EN 60204-1 2010	11	Protection Rating	15
EN ISO 12100 2010	11	protective ground connection	30
Encoder Specifications	36		
EU 2015/863	11	R	
eyebolts	20	Rotary Encoder Specifications	39

S

serial number	19
shimming	24
Solution	54
Specifications	16
BM500 Motor	38
BMS465 Motor	37
Brake	36
Encoder	36
Hall-Effect Sensors	36
Limit Switch	36
Linear Encoder	39
Rotary Encoder	39
Thermistor Specifications	36
stabilizing stage	19
stage	
distortion	24
stabilizing	19
standoffs	20
Symptom	54

т

Table of Contents	3
Temperature Effects	15
thermal expansion coefficient	15
Thermistor Specifications	36
torque	27
Troubleshooting	54

U

Unpacking and Handling the Stage	19

v

vacuum guidelines	18
vacuum lubricant (Braycote 602EF)	18
Vacuum Operation	18
Vibration	15

w

Warnings	7
Warranty and Field Service	55