Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2006-2022, Aerotech, Inc., All rights reserved.
Table of Contents

AMG Series Motorized Position and Rate Gimbals .. 1
 Table of Contents .. 3
 List of Figures ... 4
 List of Tables ... 5
 EU Declaration of Incorporation ... 6
 UKCA Declaration of Incorporation ... 7
 Safety Procedures and Warnings ... 8
 Installation and Operation .. 9
 Electrical Warnings .. 10
 Motor-Related Warnings ... 11
 Pinch Points ... 12
 Handling and Storage .. 13

Chapter 1: Overview ... 17
 1.1. Environmental Specifications ... 18
 1.2. Accuracy and Temperature Effects ... 18
 1.3. Basic Specifications .. 19
 1.4. Vacuum Operation .. 20
 1.5. Export Restrictions ... 21

Chapter 2: Installation .. 23
 2.1. Dimensions .. 23
 2.2. Securing the Base to the Mounting Surface ... 28
 2.3. Attaching the Payload to the Stage .. 30

Chapter 3: Electrical Installation ... 31
 3.1. Motor and Feedback Connectors .. 32
 3.2. Motor and Feedback Wiring ... 35
 3.3. Motor and Feedback Specifications .. 36
 3.4. Limits, Marker, and Machine Direction ... 40
 3.5. Motor and Feedback Phasing ... 41

Chapter 4: Maintenance .. 43
 4.1. Service and Inspection Schedule .. 43
 4.2. Cleaning and Lubrication ... 44
 4.3. Troubleshooting ... 45

Appendix A: Warranty and Field Service ... 47

Appendix B: Revision History ... 49

Index .. 51
List of Figures

Figure 1-1: Shipping Brackets ... 14
Figure 1-2: Lifting Features ... 15
Figure 2-1: AMG200 Dimensions ... 23
Figure 2-2: AMG300 Dimensions ... 24
Figure 2-3: AMG400 Dimensions ... 25
Figure 2-4: AMG500 Dimensions ... 26
Figure 2-5: AMG600 Dimensions ... 27
Figure 2-6: View of AMG Showing Mounting Holes 29
Figure 3-1: AMG Motor and Feedback Wiring 35
Figure 3-2: Machine Direction ... 40
Figure 3-3: Hall Phasing Diagram ... 41
Figure 3-4: Encoder Phasing Reference Diagram (Standard/Square Wave) ... 42
Figure 3-5: Encoder Phasing Reference Diagram (Analog/Sine Wave) ... 42
List of Tables

Table 1-1: Model Numbers and Ordering Options ... 17
Table 1-2: Environmental Specifications .. 18
Table 1-3: AMG Series Specifications .. 19
Table 2-1: Stage Mounting Surface Flatness Requirement ... 28
Table 2-2: Stage to Mounting Surface Hardware .. 28
Table 3-1: High Power D-Style Motor Connector Pinout .. 33
Table 3-2: Mating Connector Part Numbers for the Motor Connector 33
Table 3-3: Feedback Connector Pinout ... 34
Table 3-4: Mating Connector Part Numbers for the Feedback Connector 34
Table 3-5: Hall-Effect Sensor Specifications ... 36
Table 3-6: Thermistor Specifications ... 36
Table 3-7: Encoder Specifications .. 36
Table 3-8: Azimuth Resolution Information .. 36
Table 3-9: Elevation Resolution Information ... 36
Table 3-10: S-130-39 Rotary Motor Specifications .. 37
Table 3-11: S-180-69 Rotary Motor Specifications .. 38
Table 3-12: S-240-63 Rotary Motor Specifications .. 39
Table 4-1: Troubleshooting ... 45
EU Declaration of Incorporation

Manufacturer
Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2811
USA

herewith declares that the product:
AMG gimbal

is intended to be incorporated into machinery to constitute machinery covered by the Directive 2006/42/EC as amended;

and that the following harmonized European standards have been applied:

- EN ISO 12100:2010
 Safety of machinery - Basic concepts, general principles for design
- EN 60204-1:2010
 Safety of machinery - Electrical equipment of machines - Part 1: General requirements

and further more declares that

it is not allowed to put the equipment into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Directive 2006/42/EC and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

EU 2015/863 Directive, Restricted Substances (RoHS 3)

Authorized Representative
/ Simon Smith, European Director
Aerotech Ltd
The Old Brick Kiln, Ramsdell, Tadley
Hampshire RG26 5PR
UK

Engineer Verifying Compliance
/ Alex Weibel
Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2811
USA

Date
12/20/2022
UKCA Declaration of Incorporation

Manufacturer Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2811
USA

herewith declares that the product:

AMG gimbal

To which this declaration relates, meets the essential health and safety requirements and is in conformity with the relevant UK Legislation listed below:

Supply of Machinery (Safety) Regulations 2008
Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Using the relevant section of the following UK Designated Standards and other normative documents when installed in accordance with the manufacturer’s supplied installation instructions.

- EN ISO 12100:2010
- Safety of machinery - Basic concepts, general principles for design
- EN 60204-1:2010
- Safety of machinery - Electrical equipment of machines - Part 1: General requirements

and furthermore declares that it is not allowed to put the product into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Supply of Machinery (Safety) Regulations 2008 UK Legislation and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

- EN ISO 12100:2010
- Safety of machinery - Basic concepts, general principles for design

Authorized Representative

/ Simon Smith, European Director
Aerotech Ltd
The Old Brick Kiln, Ramsdell, Tadley
Hampshire RG26 5PR
UK

Engineer Verifying Compliance

/ Alex Weibel
Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2811
USA

Date
12/20/2022
Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the gimbal.
- Read all parts of this manual before you install or operate the gimbal or before you do maintenance to your system.
- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:
- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

- Shock/Electrocution Hazard
- Pinch, Shear, or Crush Hazard
- General/Conditional Awareness
- Rotational Machinery Hazard
- Hot Surface Hazard
- Pinch/Entanglement Hazard
- Magnetic Field Hazard
- Trip Hazard
- Heavy, Bulky Lifting Hazard
- Appropriate Equipment Required
- Pressure/Explosive Atmosphere Hazard
- Electrostatic Discharge Hazard

A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear personal protective equipment (PPE): Safety Glasses
- If applicable, do not lift unassisted
- Wear personal protective equipment (PPE): Gloves
- Wear personal protective equipment (PPE): Hearing Protection
Installation and Operation

To decrease the risk of damage to the equipment, you must obey the precautions that follow.

DANGER: General Hazard Warning!
This product can produce high forces and move at velocities that could cause injury. The user is responsible for its safe operation. The following general equation is provided to assist with risk assessments in regards to contact and pinch points:

\[Pressure_{Max} \left[\frac{N}{mm^2} \right] = \frac{Force_{Peak}[N]}{Area_{Contact}[mm^2]} \]

WARNING: General Hazard Warning!
- Only trained operators should operate this equipment.
- All service and maintenance must be done by approved personnel.
- Use this product only in environments and operating conditions that are approved in this manual.
- Never install or operate equipment that appears to be damaged.
- Make sure that the product is securely mounted before you operate it.
- Use care when you move the AMG or you could negatively affect the performance of it.

WARNING: Trip Hazard!
Route, house, and secure all cables, duct work, air, or water lines. Failure to do so could introduce trip hazards around the system that could result in physical injury or could damage the equipment.
Electrical Warnings

To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

DANGER: Electrical Shock Hazard!

- Stage motor phase voltage levels could be hazardous live.
- Personnel are protected from hazardous voltages unless electrical interconnections, protective bonding (safety ground), or motor/stage enclosures are compromised.
- Do not connect or disconnect stage/motor interconnections while connected to a live electrical power source.
- Before you set up or do maintenance, disconnect electrical power.
- It is the responsibility of the End User/System Integrator to make sure that stages are properly connected and grounded per Engineering Standards and applicable safety requirements.
- It is the responsibility of the End User/System Integrator to configure the system drive or controller within the Aerotech motor/stage electrical and mechanical specifications.
Motor-Related Warnings

Aerotech motors are capable of producing high forces and velocities. Obey all warnings and all applicable codes and standards when you use or operate a stage or system that incorporates Aerotech motors.

<table>
<thead>
<tr>
<th>DANGER: Mechanical Hazard!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel must be made aware of the mechanical hazards during set up or when you do service to the stage.</td>
</tr>
<tr>
<td>- Unintentional manual movement into the stage "end-of-travel" stops, could damage the stage or undo precision alignments.</td>
</tr>
<tr>
<td>- Stage movement could create pinch points, entanglement hazards, or rotational mechanical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER: Hot Surface Hazard!</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The stage/motor frame temperature could exceed 70°C in some applications.</td>
</tr>
<tr>
<td>- Do not touch the stage/motor frame while it is in operation.</td>
</tr>
<tr>
<td>- Wait until the stage/motor has cooled before you touch it.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER: Risk of Explosive Atmosphere!</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Standard Aerotech stage/motors are not rated for applications with explosive atmospheres such as airborne dust or combustible vapors.</td>
</tr>
<tr>
<td>- Do not operate stage/motors outside of Aerotech environmental specifications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER: Magnetic Field Hazard!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotech stage/motors contain magnets which can present a Magnetic Field Hazard.</td>
</tr>
<tr>
<td>- Do not disassemble a stage motor under any circumstances.</td>
</tr>
<tr>
<td>- Strong magnetic fields could interfere with external/internal medical devices.</td>
</tr>
<tr>
<td>- Strong magnetic fields could present mechanical hazards such as pinch points.</td>
</tr>
</tbody>
</table>
Pinch Points

A pinch point is a mechanical hazard that can occur when there are exposed parts of the stage or system that can move. For example, the travel of a stage tabletop could expose the user to a pinch point between the tabletop and the stage housing. The images that follow will show you typical external and internal pinch point locations.

DANGER: Mechanical Hazard!

- System travel can cause crush, shear, or pinch injuries.
- Only trained operators should operate this equipment.
- Do not put yourself in the travel path of machinery.
- Restrict access to all motor and stage parts
 - when the system moves under power (during normal operation, for example).
 - when the system is moved manually (during the installation process or when you do maintenance, for example).
- Motors are capable of very high speeds and acceleration rates.

Figure 1: Typical Pinch Point Locations

DANGER: Rotating Machinery Hazard!

Keep hands and loose objects away from the stage while it is in motion.
Handling and Storage

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the gimbal.

- Be careful when you move or transport the gimbal.
- Retain the shipping materials for future use.
- Transport or store the gimbal in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

You could damage the power supply or drives if you fail to observe the correct ESD practices.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the gimbal is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference.

Each stage has a label listing the system part number and serial number. These numbers contain information necessary for maintenance or system hardware and software updates. Locate this label and record the information for later reference.

Unpacking and Handling

It is the responsibility of the customer to safely and carefully lift and move the gimbal.

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

DANGER: Lifting Hazard! Use care when you move the AMG or you could negatively affect the performance of it.

- Use the correct lifting techniques, mechanical assistance, or additional help to lift or move this product.
- Do not use the cables or the connectors to lift or move this product.
- Make sure that all moving parts are secure before you move the gimbal. Unsecured moving parts could shift and cause injury or damage to the equipment.
- If the gimbal is heavy, a single person lift could cause injury. Use assistance when you lift or move it.
 - Refer to **Section 2.1. Dimensions** for dimensions

Carefully remove the stage from its protective shipping container.

- Lift this product only by the base.
- For multi-axis assemblies, always lift the system by the lower axis.
- Use a cart, dolly, or similar device to move the stage to a new location.

Gently set the stage on a smooth, flat, and clean surface. Use compressed nitrogen or clean, dry, oil-free air to remove any dust or debris that has collected during shipping.
Before you operate the stage, let it stabilize at room temperature for at least 12 hours. This will ensure that all of the alignments, preloads, and tolerances are the same as they were when they were tested at Aerotech.

Each stage has a label listing the system part number and serial number. These numbers contain information necessary for maintenance or system hardware and software updates. Locate this label and record the information for later reference.

Shipping Brackets

Shipping brackets (typically red, anodized aluminum) might have been installed to secure the system prior to shipment. The shipping brackets, if installed, will need to be removed prior to machine start up.

Figure 1-1: Shipping Brackets
Storage

Store the gimbal in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the gimbal in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to Section 1.1. Environmental Specifications
This page intentionally left blank.
Chapter 1: Overview

Table 1-1: Model Numbers and Ordering Options

<table>
<thead>
<tr>
<th>AMG Series Direct-Drive Gimbals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG200 200 mm nominal aperture</td>
<td></td>
</tr>
<tr>
<td>AMG300 300 mm nominal aperture</td>
<td></td>
</tr>
<tr>
<td>AMG400 400 mm nominal aperture</td>
<td></td>
</tr>
<tr>
<td>AMG500 500 mm nominal aperture</td>
<td></td>
</tr>
<tr>
<td>AMG600 600 mm nominal aperture</td>
<td></td>
</tr>
</tbody>
</table>

Feedback (Required)

- E1 Incremental encoder, 1 Vpp
- E2 Incremental encoder, TTL, x5 interpolation
- E3 Incremental encoder, TTL, x50 interpolation

Metrology (Required)

- PL1 Metrology, uncalibrated with performance plots
- PL2 Metrology, calibrated (HALAR) with performance plots

Integration (Required)

- TAS Test as system: Testing, integration, and documentation of a group of components as a complete system that will be used together.
- TAC Test as components: Testing and integration of individual items as discrete components that ship together.
1.1. Environmental Specifications

WARNING: General Hazard Warning! Do not expose this product to environments or conditions outside of the listed specifications. You could damage the equipment if you exceed the environmental or operating specifications.

DANGER: Risk of Explosive Atmosphere!
- Standard Aerotech stage/motors are not rated for applications with explosive atmospheres such as airborne dust or combustible vapors.
- Do not operate stage/motors outside of Aerotech environmental specifications.

<table>
<thead>
<tr>
<th>Table 1-2: Environmental Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
</tr>
<tr>
<td>Operating: 10° to 35° C (50° to 95° F)</td>
</tr>
<tr>
<td>The optimal operating temperature is 20° C ±2° C (68° F ±4° F). If at any time the operating temperature deviates from 20° C degradation in performance could occur.</td>
</tr>
<tr>
<td>Storage: 0° to 40° C (32° to 104° F) in original shipping packaging</td>
</tr>
<tr>
<td>Humidity</td>
</tr>
<tr>
<td>Operating: 20% to 60% RH</td>
</tr>
<tr>
<td>Storage: 10% to 70% RH, non-condensing in original packaging.</td>
</tr>
<tr>
<td>The stage should be packaged with desiccant if it is to be stored for an extended time.</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Operating: 0 m to 2,000 m (0 ft to 6,562 ft) above sea level</td>
</tr>
<tr>
<td>Contact Aerotech if your specific application involves use above 2,000 m or below sea level.</td>
</tr>
<tr>
<td>Vibration</td>
</tr>
<tr>
<td>Use the system in a low vibration environment. Floor or acoustical vibration can affect system performance. Contact Aerotech for information regarding your specific application.</td>
</tr>
<tr>
<td>Protection Rating</td>
</tr>
<tr>
<td>Limited protection against dust, but not water (IP40 equivalent ingress protection rating).</td>
</tr>
<tr>
<td>Use</td>
</tr>
<tr>
<td>Indoor use only</td>
</tr>
</tbody>
</table>

1.2. Accuracy and Temperature Effects

Aerotech products are designed for and built in a 20°C (68°F) environment. Temperature changes could cause a decrease in performance or permanent damage to the gimbal. At a minimum, the environmental temperature must be controlled to within 0.25°C per 24 hours to ensure the gimbal specifications are repeatable over an extended period of time. The severity of temperature effects on all specifications depends on many different environmental conditions, which include how the gimbal is mounted. Contact the factory for more details.
1.3. Basic Specifications

Table 1-3: AMG Series Specifications

<table>
<thead>
<tr>
<th>Basic Model</th>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel</td>
<td>360° continuous, Azimuth (AZ) / Elevation (EL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Bus Voltage</td>
<td>340 VDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Torque (continuous)</td>
<td>Azimuth 2.85 N·m</td>
<td>11.12 N·m</td>
<td>11.12 N·m</td>
<td>19.71 N·m</td>
<td>19.71 N·m</td>
</tr>
<tr>
<td></td>
<td>Elevation 2.85 N·m</td>
<td>2.85 N·m</td>
<td>2.85 N·m</td>
<td>11.12 N·m</td>
<td>11.12 N·m</td>
</tr>
<tr>
<td>Clear Aperture Diameter<sup>(1)</sup></td>
<td>194 mm</td>
<td>292 mm</td>
<td>394 mm</td>
<td>489 mm</td>
<td>591 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±24 to ±144 µrad<sup>(2)</sup> (±5 to ±30 arc sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>±2.4 µrad (±0.5 arc sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Rotary Speed<sup>(3)</sup></td>
<td>100 rpm</td>
<td>100 rpm</td>
<td>100 rpm</td>
<td>50 rpm</td>
<td>50 rpm</td>
</tr>
<tr>
<td>Maximum Load Capability</td>
<td>20 kg</td>
<td>40 kg</td>
<td>40 kg</td>
<td>70 kg</td>
<td>70 kg</td>
</tr>
<tr>
<td>Axis Wobble</td>
<td>48 µrad (10 arc sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthogonality</td>
<td>24 µrad (5 arc sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Finish</td>
<td>Black Anodize with Hard-Coated Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Component Diameter<sup>(5)</sup></td>
<td>206 mm</td>
<td>306 mm</td>
<td>407 mm</td>
<td>509 mm</td>
<td>610 mm</td>
</tr>
<tr>
<td>Nominal Component Thickness</td>
<td>41 mm</td>
<td>54 mm</td>
<td>64 mm</td>
<td>95 mm</td>
<td>102 mm</td>
</tr>
<tr>
<td>Mass (Without Mirror)</td>
<td>29 kg</td>
<td>47 kg</td>
<td>54 kg</td>
<td>116 kg</td>
<td>137 kg</td>
</tr>
<tr>
<td>Inertia<sup>(6)</sup></td>
<td>Azimuth 0.97 kg·m<sup>2</sup></td>
<td>1.877 kg·m<sup>2</sup></td>
<td>2.71 kg·m<sup>2</sup></td>
<td>10.4 kg·m<sup>2</sup></td>
<td>14.94 kg·m<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Elevation 0.019 kg·m<sup>2</sup></td>
<td>0.105 kg·m<sup>2</sup></td>
<td>0.27 kg·m<sup>2</sup></td>
<td>0.974 kg·m<sup>2</sup></td>
<td>2.33 kg·m<sup>2</sup></td>
</tr>
<tr>
<td>AZ Aperture When Slip Ring Is Removed (AZ Travel Must Be Limited)</td>
<td>50 mm</td>
<td>75 mm</td>
<td>75 mm</td>
<td>100 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>Aperture With Slip Ring</td>
<td>12.7 mm</td>
<td>12.7 mm</td>
<td>12.7 mm</td>
<td>38.1 mm</td>
<td>38.1 mm</td>
</tr>
</tbody>
</table>

⁽¹⁾ Special cell adapters and slip ring assemblies available by special order.

⁽²⁾ ±24 µrad calibrated; ±144 µrad uncalibrated.

⁽³⁾ Maximum speed based on stage capability; maximum application velocity may be limited by system data rate and system resolution.

⁽⁴⁾ With x500 multiplication on AS encoder. Higher resolutions available.

⁽⁵⁾ Tolerance equals +0/-0.25.

⁽⁶⁾ Unloaded inertia.
1.4. Vacuum Operation

There are two vacuum preparation options:
- Low Vacuum (for use in atmospheric pressures to 10^{-3} Torr)
- High Vacuum (preparation for environments from 10^{-3} to 10^{-6} Torr).

Special preparations include:
- Parts are lubricated with vacuum-compatible lubricants.
- Materials, fasteners, and coatings are selected to be compatible with the specified level of vacuum.
- High-vacuum systems are designed to eliminate trapped volumes.
- Prior to assembly, gimbal parts are thoroughly cleaned in a clean environment.
- The gimbal is packaged in a special polyethylene bag.

Vacuum Guidelines

To ensure that the gimbal will continue to perform well in the vacuum environment, use the guidelines that follow (in addition to standard handling, installation, and lubrication guidelines outlined in this manual).

1. Do not remove the gimbal from its sealed bag until it is ready to use.
2. Always handle the gimbal in a clean environment and use powder-free polyethylene gloves to prevent any contaminants from adhering to the surface of the gimbal.
3. During installation, use cleaned, vented, stainless steel fasteners to secure the gimbal.
4. Reduced air pressure eliminates significant convective heat transfer. This, coupled with the viscous vacuum-compatible lubricants, could result in excessive motor operating temperatures. Because of this, consider all continuous torque ratings to be 40 to 60% lower than the value specified for operation in normal atmospheric environment. Reduce motor usage accordingly.
5. We recommend that you use a small quantity of Braycote® 602EF grease or a compatible substitute of equal quality lubricant in vacuum applications.
6. To reduce outgassing during the initial pump-down to vacuum pressure, Aerotech recommends that you bake out vacuum systems when you first install them into the vacuum chamber. Bake the vacuum components at 60 °C for 24 to 48 hours to desorb water vapor from surfaces and degas polymers (such as cable insulation).
1.5. Export Restrictions

This product is export controlled by United States Commerce Department export regulations. If you are from a non-US country and wish to make a purchase, contact Aerotech to determine if an export license is required. People in countries embargoed by the United States cannot purchase and import one of these products.
This page intentionally left blank.
Chapter 2: Installation

The gimbal installation must be in accordance with the instructions provided by this manual and any accompanying documentation. Failure to follow these instructions could result in injury or damage to the equipment.

2.1. Dimensions

Figure 2-1: AMG200 Dimensions

NOTE - THIS PRODUCT IS EXPORT CONTROLLED: ECCN 2B130

DIMENSIONS: MILLIMETERS
Figure 2-2: AMG300 Dimensions

NOTE: THIS PRODUCT IS EXPORT CONTROLLED; ECCN 2B120

DIMENSIONS: MILLIMETERS
Figure 2-3: AMG400 Dimensions

NOTE - THIS PRODUCT IS EXPORT CONTROLLED: ECONN 2B120
DIMENSIONS: MILLIMETERS
Figure 2-4: AMG500 Dimensions

NOTE - THIS PRODUCT IS EXPORT CONTROLLED: ECCN 2B120
DIMENSIONS: MILLIMETERS
Figure 2-5: AMG600 Dimensions

NOTE - THIS PRODUCT IS EXPORT CONTROLLED: ECCN 2B312B

DIMENSIONS: MILLIMETERS
2.2. Securing the Base to the Mounting Surface

DANGER: Mechanical Hazard!
Personnel must be made aware of the mechanical hazards during setup or when you do service to the gimbal.
- Do not manually move the gimbal if it is connected to a power source.
- The gimbal must be mounted securely. Improper mounting can result in injury and damage to the equipment.
- When you move the cell manually to do maintenance, this could expose the operator to pinch points. Refer to Pinch Points on Page 12.

The mounting surface must be flat and have adequate stiffness to achieve the maximum performance from the gimbal. When it is mounted to a non-flat surface, the gimbal can be distorted while the mounting screws are tightened. This distortion will decrease overall accuracy. Adjustments to the mounting surface must be done before the stage is secured.
Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Use precision flatstones on the mounting surface to remove any burrs or high spots. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

IMPORTANT: The gimbal is precision machined and verified for flatness at the factory.
- Do not machine the gimbal housing. If you must machine a surface to achieve a required flatness, machine the mounting surface.
- Keep the use of shims to a minimum when you mount the gimbal to the mounting surface. The use of shims could reduce the rigidity of the system.

<table>
<thead>
<tr>
<th>Table 2-1: Stage Mounting Surface Flatness Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>All Frame Sizes</td>
</tr>
</tbody>
</table>

AMG series stages have a fixed mounting pattern (refer to Figure 2-6). Refer to Section 2.1. for specific model mounting locations and dimensions.

Tightening torque values for the mounting hardware are dependent on the properties of the surface to which the stage is being mounted. Values provided are typical values and may not be accurate for your mounting surface.

<table>
<thead>
<tr>
<th>Table 2-2: Stage to Mounting Surface Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting Hardware</td>
</tr>
<tr>
<td>AMG200, 300, 400</td>
</tr>
<tr>
<td>AMG500, 600</td>
</tr>
</tbody>
</table>
Figure 2-6: View of AMG Showing Mounting Holes

TOP VIEW

Portions of the AMG have been hidden to show the locations of the mounting holes.
2.3. Attaching the Payload to the Stage

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

Use a representative payload during start-up to prevent accidental damage to the stage and the payload. Proceed with the electrical installation and test the motion control system in accordance with the system documentation. Document all results for future reference. For information on electrical installation refer to Chapter 3: Electrical Installation and the documentation delivered with the stage.

IMPORTANT: If your AMG was purchased with Aerotech controls, it could have been tuned with a representative payload based on the information provided at the time of order. If you start the AMG without a payload, the servo gains provided by Aerotech with the shipment may not be appropriate and servo instability can occur. Refer to the controller help file for tuning assistance.

The payload must be flat, rigid, and comparable to the stage in quality to maintain optimum performance.

The standard AMG is capable of accommodating cells up to 600 mm in diameter. Custom solutions can be designed for non-standard loads.
Chapter 3: Electrical Installation

DANGER: Electrical Shock Hazard!
- Stage motor phase voltage levels could be hazardous live.
- Personnel are protected from hazardous voltages unless electrical interconnections, protective bonding (safety ground), or motor/stage enclosures are compromised.
- Do not connect or disconnect stage/motor interconnections while connected to a live electrical power source.
- Before you set up or do maintenance, disconnect electrical power.
- It is the responsibility of the End User/System Integrator to make sure that stages are properly connected and grounded per Engineering Standards and applicable safety requirements.
- It is the responsibility of the End User/System Integrator to configure the system drive or controller within the Aerotech motor/stage electrical and mechanical specifications.

WARNING: General Hazard Warning!
Applications that require access to the AMG must be restricted to qualified and trained personnel. The system integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements when they integrate the AMG into a completed system.

Electrical installation requirements will depend on the ordered product options. Installation instructions in this section are for Aerotech products equipped with standard Aerotech motors intended for use with an Aerotech motion control system. Contact Aerotech for further information on products that are otherwise configured.

Aerotech motion control systems are adjusted at the factory for optimum performance. When the AMG is part of a complete Aerotech motion control system, setup should only require that you connect the gimbal to the appropriate drive chassis with the cables provided. Labels on the system components should indicate the appropriate connections.

If system level integration was purchased, an electrical drawing that shows the system interconnects has been supplied with the system (separate from this documentation).

The electrical wiring from the motor and encoder are integrated at the factory. Refer to the sections that follow for standard motor wiring and connector pinouts.

IMPORTANT: Refer to the controller documentation to adjust servo gains for optimum velocity and position stability.
3.1. Motor and Feedback Connectors

Stages equipped with standard motors and encoders come from the factory completely wired and assembled.

IMPORTANT: Refer to the other documentation accompanying your Aerotech equipment. Call your Aerotech representative if there are any questions on system configuration.

IMPORTANT: If you are using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

The protective ground connection of the AMG provides motor frame ground protection only. Additional grounding and safety precautions are required for applications requiring access to the stage while it is energized. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

DANGER: Electrical Shock Hazard!

- The protective ground connection must be properly installed to minimize the possibility of electric shock.
- The stage controller must provide over-current and over-speed protection. Failure to do so could cause electric shock or damage to the equipment.
Table 3-1: High Power D-Style Motor Connector Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Shield Connection</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>Motor Phase A</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Motor Phase B</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Motor Phase C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Frame Ground (motor protective ground)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-2: Mating Connector Part Numbers for the Motor Connector

<table>
<thead>
<tr>
<th>Mating Connector</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backshell</td>
<td>ECK00656</td>
<td>Amphenol #17E-1726-2</td>
</tr>
<tr>
<td>Sockets [QTY. 4]</td>
<td>ECK00659</td>
<td>ITT Cannon #DM53744-6</td>
</tr>
<tr>
<td>Connector</td>
<td>ECK00657</td>
<td>ITT Cannon #DBM9W4SA197</td>
</tr>
</tbody>
</table>
Table 3-3: Feedback Connector Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Shield Connection</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Over-Temperature Thermistor Sensor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5V Power Supply Input</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hall Effect Sensor (Phase B)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MRK- (Encoder Marker-)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MRK+ (Encoder Marker+)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hall Effect Sensor (Phase A)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hall Effect Sensor (Phase C)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COS+ (Encoder Cosine+)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>COS- (Encoder Cosine-)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5V Power Supply Input</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SIN+ (Encoder Sine+)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SIN- (Encoder Sine-)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Common ground</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Common ground</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-4: Mating Connector Part Numbers for the Feedback Connector

<table>
<thead>
<tr>
<th>Mating Connector</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-Socket D-Connector</td>
<td>ECK00300</td>
<td>FCI DB25S064TLF</td>
</tr>
<tr>
<td>Backshell</td>
<td>ECK00656</td>
<td>Amphenol 17E-1726-2</td>
</tr>
</tbody>
</table>
3.2. Motor and Feedback Wiring

Shielded cables are required for the motor and feedback connections.

Figure 3-1: AMG Motor and Feedback Wiring
3.3. Motor and Feedback Specifications

Table 3-5: Hall-Effect Sensor Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>5 V ±5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td></td>
<td>50 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Type</td>
<td>Open Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>24 V max (pull up)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>5 mA (sinking)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-6: Thermistor Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>Logic "0" (no fault)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logic "1" (over-temperature fault)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Resistance</td>
<td>~100 Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Resistance</td>
<td>~10 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1K pull-up to +5V recommended.

Table 3-7: Encoder Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>5 V ±5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>250 mA (typical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Signals (-E1)</td>
<td>Sinusoidal Type (Incremental Encoder): Analog: SIN+, SIN-, COS+, COS-, 1V pk-pk; Digital (RS422): MRK+, MRK- signals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Signals (-E2, -E3)</td>
<td>Digital Output (Incremental Encoder): TTL Encoder line-driver signals; RS422/485 compatible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-8: Azimuth Resolution Information

<table>
<thead>
<tr>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>11840 lines/rev</td>
<td>15744 lines/rev</td>
<td>15744 lines/rev</td>
<td>23600 lines/rev</td>
</tr>
<tr>
<td>-E1 (sine)*</td>
<td>0.27 μrad Max.</td>
<td>0.2 μrad Max.</td>
<td>0.2 μrad Max.</td>
<td>0.13 μrad Max.</td>
</tr>
<tr>
<td>-E2</td>
<td>27 μrad</td>
<td>20 μrad</td>
<td>20 μrad</td>
<td>13 μrad</td>
</tr>
<tr>
<td>-E3</td>
<td>2.7 μrad</td>
<td>2 μrad</td>
<td>2 μrad</td>
<td>1.3 μrad</td>
</tr>
</tbody>
</table>

* With x500 multiplication on -E1 encoder.

Table 3-9: Elevation Resolution Information

<table>
<thead>
<tr>
<th>AMG200</th>
<th>AMG300</th>
<th>AMG400</th>
<th>AMG500</th>
<th>AMG600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>11840 lines/rev</td>
<td>11840 lines/rev</td>
<td>11840 lines/rev</td>
<td>15744 lines/rev</td>
</tr>
<tr>
<td>-E1 (sine)*</td>
<td>0.27 μrad Max.</td>
<td>0.27 μrad Max.</td>
<td>0.27 μrad Max.</td>
<td>0.2 μrad Max.</td>
</tr>
<tr>
<td>-E2</td>
<td>27 μrad</td>
<td>27 μrad</td>
<td>27 μrad</td>
<td>20 μrad</td>
</tr>
<tr>
<td>-E3</td>
<td>2.7 μrad</td>
<td>2.7 μrad</td>
<td>2.7 μrad</td>
<td>2.0 μrad</td>
</tr>
</tbody>
</table>

* With x500 multiplication on -E1 encoder.
Table 3-10: S-130-39 Rotary Motor Specifications

<table>
<thead>
<tr>
<th>Performance Specifications (1,5)</th>
<th>S-130-39 (AMG200 [AZ/EL])</th>
<th>(AMG300 [EL])</th>
<th>(AMG400 [EL])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winding Designation</td>
<td>-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Torque, Cont. (2)</td>
<td>N·m</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>Peak Torque (3)</td>
<td>N·m</td>
<td>9.42</td>
<td></td>
</tr>
<tr>
<td>Electrical Specifications (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Designation</td>
<td>-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEMF Const., line-line, Max.</td>
<td>V<sub>pk</sub>/krpm</td>
<td>75.1</td>
<td></td>
</tr>
<tr>
<td>Continuous Current, Stall (2)</td>
<td>A<sub>pk</sub></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A<sub>rms</sub></td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Peak Current, Stall (2)</td>
<td>A<sub>pk</sub></td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A<sub>rms</sub></td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>Torque Constant (4, 9)</td>
<td>N·m/A<sub>pk</sub></td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N·m/A<sub>rms</sub></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Motor Constant (2, 4)</td>
<td>N·m/√W</td>
<td>0.265</td>
<td></td>
</tr>
<tr>
<td>Resistance, 25°C, line-line</td>
<td>Ω</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Inductance, line-line</td>
<td>mH</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Maximum Bus Voltage</td>
<td>V<sub>DC</sub></td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>°C/W</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Number of Poles</td>
<td>--</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature.
2. Values shown @ 75°C rise above a 25°C ambient temperature, with housed motor mounted to a 330 mm x 330 mm x 13 mm aluminum heat sink.
3. Peak force assumes correct rms current; consult Aerotech.
4. Torque constant and motor constant specified at stall.
5. All performance and electrical specifications ±10%.
6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.
7. Maximum winding temperature is 100°C (thermistor trips at 100°C).
8. Ambient operating temperature range 0°C - 25°C; consult Aerotech for performance in elevated ambient temperatures.
9. All Aerotech amplifiers are rated A_{pk}; use torque constant in N·m/A_{pk} when sizing.
Table 3-11: S-180-69 Rotary Motor Specifications

<table>
<thead>
<tr>
<th>Performance Specifications (1,5)</th>
<th>S-180-69 (AMG300 [AZ]) (AMG400 [AZ]) (AMG500 [EL]) (AMG600 [EL])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winding Designation</td>
<td>-A</td>
</tr>
<tr>
<td>Stall Torque, Cont. (2)</td>
<td>N·m</td>
</tr>
<tr>
<td>Peak Torque (3)</td>
<td>N·m</td>
</tr>
<tr>
<td>Peak Torque (3)</td>
<td>44.47</td>
</tr>
</tbody>
</table>

Electrical Specifications (5)

<table>
<thead>
<tr>
<th>Winding Designation</th>
<th>-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEMF Const., line-line, Max</td>
<td>$V_{pk}/krpm$</td>
</tr>
<tr>
<td>Continuous Current, Stall (2)</td>
<td>A_{pk}</td>
</tr>
<tr>
<td></td>
<td>A_{rms}</td>
</tr>
<tr>
<td>Peak Current, Stall (2)</td>
<td>A_{pk}</td>
</tr>
<tr>
<td></td>
<td>A_{rms}</td>
</tr>
<tr>
<td>Torque Constant (4, 9)</td>
<td>N·m/A_{pk}</td>
</tr>
<tr>
<td></td>
<td>N·m/A_{rms}</td>
</tr>
<tr>
<td>Motor Constant (2, 4)</td>
<td>N·m/\sqrt{W}</td>
</tr>
<tr>
<td>Resistance, 25°C, line-line</td>
<td>Ω</td>
</tr>
<tr>
<td>Inductance, line-line</td>
<td>mH</td>
</tr>
<tr>
<td>Maximum Bus Voltage</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>°C/W</td>
</tr>
<tr>
<td>Number of Poles</td>
<td>--</td>
</tr>
</tbody>
</table>

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature.
2. Values shown @ 75°C rise above a 25 °C ambient temperature, with housed motor mounted to a 330 mm x 330 mm x 13 mm aluminum heat sink
3. Peak force assumes correct rms current; consult Aerotech.
4. Torque constant and motor constant specified at stall.
5. All performance and electrical specifications ±10%.
6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.
7. Maximum winding temperature is 100 °C (thermistor trips at 100 °C).
8. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures.
9. All Aerotech amplifiers are rated A_{pk}; use torque constant in N·m/A_{pk} when sizing.
Table 3-12: S-240-63 Rotary Motor Specifications

<table>
<thead>
<tr>
<th>Performance Specifications (1,5)</th>
<th>S-240-63 (AMG500 [AZ])</th>
<th>S-240-63 (AMG600 [AZ])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winding Designation</td>
<td>-A</td>
<td></td>
</tr>
<tr>
<td>Stall Torque, Cont. (2)</td>
<td>N·m</td>
<td>19.71</td>
</tr>
<tr>
<td>Peak Torque (3)</td>
<td>N·m</td>
<td>78.82</td>
</tr>
</tbody>
</table>

Electrical Specifications (5)

<table>
<thead>
<tr>
<th>Winding Designation</th>
<th>-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEMF Const., line-line, Max</td>
<td>$V_{pk/krpm}$</td>
</tr>
<tr>
<td>Continuous Current, Stall (2)</td>
<td>A_{pk}</td>
</tr>
<tr>
<td></td>
<td>A_{rms}</td>
</tr>
<tr>
<td>Peak Current, Stall (2)</td>
<td>A_{pk}</td>
</tr>
<tr>
<td></td>
<td>A_{rms}</td>
</tr>
<tr>
<td>Torque Constant (4, 9)</td>
<td>N·m/A$_{pk}$</td>
</tr>
<tr>
<td></td>
<td>N·m/A$_{rms}$</td>
</tr>
<tr>
<td>Motor Constant (2, 4)</td>
<td>N·m/√W</td>
</tr>
<tr>
<td>Resistance, 25°C, line-line</td>
<td>Ω</td>
</tr>
<tr>
<td>Inductance, line-line</td>
<td>mH</td>
</tr>
<tr>
<td>Maximum Bus Voltage</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>°C/W</td>
</tr>
<tr>
<td>Number of Poles</td>
<td>--</td>
</tr>
</tbody>
</table>

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature.
2. Values shown @ 75°C rise above a 25 °C ambient temperature, with housed motor mounted to a 330 mm x 330 mm x 13 mm aluminum heat sink
3. Torque constant and motor constant specified at stall.
4. All performance and electrical specifications ±10%.
5. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.
6. Maximum winding temperature is 100 °C (thermistor trips at 100 °C).
7. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures.
8. All Aerotech amplifiers are rated A_{pk}; use torque constant in N·m/A$_{pk}$ when sizing.
3.4. Limits, Marker, and Machine Direction

Aerotech stages are configured to have positive and negative "machine" directions. The machine direction defines the phasing of the feedback and motor signals and is dictated by the stage wiring (refer to Section 3.2.). Programming direction of a stage is set by the controller that is used to move the stage. Programming direction is typically selectable in the controller, while machine direction is hardwired in the stage. Figure 3-2 shows the machine direction of AMG stages.

Figure 3-2: Machine Direction

- Elevation Axis
 - CW Rotation
 - (Positive Machine Direction)

- Azimuth Axis
 - CW Rotation
 - (Positive Machine Direction)
3.5. Motor and Feedback Phasing

Motor phase voltage is measured relative to the virtual wye common point.

Figure 3-3: Hall Phasing Diagram

[Diagram showing phase voltage waveforms for phases A, B, and C with corresponding Hall signals and positive MOVE direction indicated.]
Figure 3-4: Encoder Phasing Reference Diagram (Standard/Square Wave)

Figure 3-5: Encoder Phasing Reference Diagram (Analog/Sine Wave)
Chapter 4: Maintenance

IMPORTANT: Read the Safety Procedures and Warnings (on Page 8) before you do maintenance to the gimbal.

4.1. Service and Inspection Schedule

Inspect the AMG at least once per month. The need for a longer or shorter inspection interval will depend on the application and conditions, such as the duty cycle, speed, and environment. Monthly inspections should include but not be limited to:

- Visually inspect the stage and cables.
- Re-tighten loose connectors.
- Replace or repair damaged cables.
- Clean the AMG and any components and cables as needed.
- Repair any damage before operating the AMG.
- Inspect and perform an operational check on all safeguards and protective devices.
4.2. Cleaning and Lubrication

DANGER: Electrical Shock Hazard! Before you do maintenance to the equipment, disconnect the electrical power.

IMPORTANT:* Wear appropriate personal protective equipment (PPE) when you use cleaning solvents or lubricants.

Cleaning

When you clean components of the AMG series stage:

1. Use a clean, dry, soft, lint-free cloth.
2. Before you use a cleaning solvent on any part of the gimbal, blow away small particles and dust with clean, dry, compressed air.
3. In applications that have multiple stages bolted together to form multi-axis systems, the orthogonality can be lost if the stage tables of the support stages are loosened. Precision aligned stages should not be loosened or disassembled.
4. We recommend that you do not disassemble the stage beyond the instructions given in this manual. Proper assembly and calibration can only be done at the factory. Contact Aerotech for more information.

Use isopropyl alcohol on a lint-free cloth to clean any external metal surface of the AMG.

WARNING: General Hazard Warning! Make sure that all solvent has completely evaporated before you move the stage.

Lubrication

There are no elements on the stage that requires lubrication.
4.3. Troubleshooting

Table 4-1: Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause and Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage will not move</td>
<td>• Controller trap or fault (refer to the Controller documentation).</td>
</tr>
</tbody>
</table>
| Stage moves uncontrollably | • Encoder (sine and cosine) signal connections (refer to Chapter 3: Electrical Installation and Controller documentation).
 | • Motor Connections (refer to Chapter 3: Electrical Installation and the Controller documentation). |
| Stage oscillates or squeals | • Gains misadjusted (refer to the Controller documentation).
 | • Encoder signals (refer to the Controller documentation). |
This page intentionally left blank.
Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.
Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech’s approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following “On-Site Non-Warranty Repair” section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

https://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO
Aerotech, Inc.
Global Headquarters

CHINA
Aerotech China
Full-Service Subsidiary

TAIWAN
Aerotech Taiwan
Full-Service Subsidiary

GERMANY
Aerotech Germany
Full-Service Subsidiary

UNITED KINGDOM
Aerotech United Kingdom
Full-Service Subsidiary
Appendix B: Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>General product and manual update</td>
</tr>
<tr>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>Revision changes have been archived. If you need a copy of this revision, contact Aerotech Global Technical Support.</td>
</tr>
<tr>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Index

2
2006/42/EC 6

A
Accuracy and Temperature Effects 18
Accuracy of the Ballscrew 18
Altitude 18
Ambient Temperature 18
Attaching the Payload 30

B
Braycote® 602EF 20

C
cleaning 28,30
mounting surface 28,30
Cleaning 44
cleaning solvent 44

D
Dimensions 23
Directive 2006/42/EC 6
distortion 28

E
Electrical Installation 31
Electrical Specifications 37
S-130 37
S-180 38
S-240 39
Electrical Warnings 10
EN 60204-1 2010 6-7
EN ISO 12100 2010 6-7
Encoder Specifications 36
EU 2015/863 6
Export Restrictions 21

G
gimbal 28
distortion 28

grease 20

H
Hall-Effect Sensors Specifications 36
Handling 13
Humidity 18

I
Inspection Schedule 43
isopropyl alcohol 44

L
label 13-14
lubricant vacuum 20
Lubrication 44

M
Motor-Related Warnings 11
Mounting Holes 29
mounting surface cleaning 28,30
securing stage 28
multiaxis combinations 44

P
packing list 13
part number 13-14
Performance Specifications S-130 37
S-180 38
S-240 39
Protection Rating 18
protective ground connection 32

R
red, anodized aluminum 14

S
S-130 Electrical Specifications 37
Performance Specifications 37

www.aerotech.com