

PRO165LM Mechanical Bearing, Direct-Drive Linear Stage

HARDWARE MANUAL

Revision 2.01

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2009-2023, Aerotech, Inc., All rights reserved.

Table of Contents

PRO165LM Mechanical Bearing, Direct-Drive Linear Stage	
Table of Contents	3
List of Figures	
List of Tables	
EU Declaration of Incorporation	
UKCA Declaration of Incorporation	
Safety Procedures and Warnings	}
Installation and Operation	
Electrical Warnings	10
Motor-Related Warnings	
Pinch Points	
Magnetic Hazards	
Handling and Storage	
Chapter 1: Overview	17
1.1. Environmental Specifications	
1.2. Accuracy and Temperature Effects	
1.3. Basic Specifications	
1.4. Vacuum Operation	23
Chapter 2: Installation	25
2.1. Dimensions	
2.2. Securing the Stage to the Mounting Surface	
2.3. Attaching the Payload to the Stage	
2.3.1. Speed Capability	
Chapter 3: Electrical Installation	
3.1. Motor and Feedback Connectors	
3.2. Motor and Feedback Wiring	
3.3. Motor and Feedback Specifications	
3.4. Limits, Marker, and Machine Direction	ا 4۔ ۱م
Chapter 4: Maintenance	45
4.1. Service and Inspection Schedule	45
4.2. Cleaning and Lubrication	
4.3. Side Seal Belt Replacement	
4.4. Troubleshooting	58
Appendix A: Warranty and Field Service	50
Appendix B: Revision History	61
Indov	65

List of Figures

Figure 2-1:	PRO165LM Dimensions	25
Figure 2-2:	PRO165LM Tabletop Dimensions (-TT2/-TT3 Option)	26
Figure 2-3:	Stage Orientations	29
Figure 2-4:	Cantilevered Load Capability	29
Figure 3-1:	Ground Connection Points for the -CMS0 Option	32
Figure 3-2:	Motor and Feedback Wiring	37
Figure 3-3:	Motor and Feedback Wiring for a Typical Vertical or Rotary Axis Stage	38
Figure 3-4:	Machine Direction	41
Figure 3-5:	Hall Phasing Diagram	42
Figure 3-6:	Encoder Phasing Reference Diagram (Standard/Square Wave)	43
Figure 3-7:	Digital Encoder Phasing Reference Diagram (Sine Wave)	43
Figure 4-1:	Hardcover Rear End Plate Removal	48
Figure 4-2:	Hardcover Screw Removal	48
Figure 4-3:	Hardcover Removal	49
Figure 4-4:	Belt Removal at the Attachment Pins	51
Figure 4-5:	Spring Location Detail	52
Figure 4-6:	Pull Through Method	53
Figure 4-7:	Stage Table Cover Plate Removal	54
Figure 4-8:	Manual Feed Method	55
Figure 4-9:	Belt Wrap	55
Figure 4-10:	Belt Alignment	56
Figure 4-11:	Belt Trim	57

List of Tables

Table 1-1:	Model Numbers and Ordering Options	17
Table 1-2:	Environmental Specifications	19
Table 1-3:	PRO165LM Series Specifications (-0100 to -0300)	21
Table 1-4:	PRO165LM Series Specifications (-0400 to -1000)	22
Table 2-1:	Stage Mounting Surface Flatness Requirement	27
Table 2-2:	Stage to Mounting Surface Hardware	27
Table 2-3:	Payload Mounting Surface Flatness Requirement	28
Table 3-1:	Motor Connector Pinout	33
Table 3-2:	General Motor Connector Pinout (for Z or T Axes)	33
Table 3-3:	Mating Connector Part Numbers for the Motor Connector	33
Table 3-4:	Feedback Connector Pinout	34
Table 3-5:	Mating Connector Part Numbers for the Brushless Motor Feedback Connector	34
Table 3-6:	Feedback Connector Pinout (-E3 Option)	35
Table 3-7:	Mating Connector Part Numbers for the Encoder Connector	35
Table 3-8:	General Feedback Connector Pinout (for Z or T Axes)	36
Table 3-9:	Mating Connector Part Numbers for the Encoder Connector	36
Table 3-10:	Hall-Effect Sensor Specifications	39
Table 3-11:	Thermistor Specifications	39
Table 3-12:	Encoder Specifications	39
Table 3-13:	Linear Encoder Resolution Specifications	39
Table 3-14:	Limit Switch Specifications	39
Table 3-15:	PRO165LM Motor Specifications (BLMC-142-A)	40
Table 4-1:	Side Seal Belt Replacement Kit Ordering Guide	50

EU Declaration of Incorporation

Manufacturer Aerotech, Inc.

101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

herewith declares that the product:

PRO165LM stage

is intended to be incorporated into machinery to constitute machinery covered by the Directive 2006/42/EC as amended; and that the following harmonized European standards have been applied:

EN ISO 12100:2010

Safety of Machinery - Basic concepts, general principles for design

EN 60204-1:2010

Safety of Machinery - Electrical equipment of machines - Part 1: General requirements

and further more declares that

it is not allowed to put the equipment into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Directive 2006/42/EC and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

EU 2015/863

Directive, Restricted Substances (RoHS 3)

Authorized Representative:

/ Norbert Ludwig

Managing Director Aerotech GmbH

Gustav-Weißkopf-Str. 18

90768 Fürth Germany

Engineer Verifying

Clay Robresby / Alex Weibel **Compliance**

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

7/19/2023 Date

UKCA Declaration of Incorporation

Manufacturer

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

herewith declares that the product:

PRO165LM stage

To which this declaration relates, meets the essential health and safety requirements and is in conformity with the relevant UK Legislation listed below:

Supply of Machinery (Safety) Regulations 2008

Hazardous Substances in Electrical and Electronic Equipment Regulations

Using the relevant section of the following UK Designated Standards and other normative documents when installed in accordance with the installation instructions supplied by the manufacturer.

EN ISO 12100:2010

Safety of Machinery - Basic concepts, general principles for design

EN 60204-1:2010

Safety of Machinery - Electrical equipment of machines - Part 1: General

requirements

and furthermore declares that it is not allowed to put the product into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Supply of Machinery (Safety) Regulations 2008 UK Legislation and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

Authorized Representative:

/ Simon Smith

Managing Director

Aerotech Ltd

The Old Brick Kiln, Ramsdell, Tadley

Hampshire RG26 5PR

UK

Engineer Verifying

(llox Rollverby / Alex Weibel **Compliance**

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

7/19/2023 Date

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the stage.

• Read all parts of this manual before you install or operate the stage or before you do maintenance to your system.

- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

Shock/Electrocution Hazard

Pinch, Shear, or Crush Hazard

General/Conditional Awareness

Rotational Machinery Hazard

Hot Surface Hazard

Pinch/Entanglement Hazard

Magnetic Field Hazard

Trip Hazard

Heavy, Bulky Lifting Hazard

Appropriate Equipment Required

Pressure/Explosive Atmosphere Hazard

Electrostatic Discharge Hazard

A blue circle symbol is an action or tip that you should obey. Some examples include:

General tip

Read the manual/section

Wear personal protective equipment (PPE): Safety Glasses

If applicable, do not lift unassisted

8

Wear personal protective equipment (PPE): Gloves

Wear personal protective equipment (PPE): Hearing Protection

Installation and Operation

To decrease the risk of damage to the equipment, you must obey the precautions that follow.

DANGER: General Hazard Warning!

This product can produce high forces and move at velocities that could cause injury. The user is responsible for its safe operation. The following general equation is provided to assist with risk assessments in regards to contact and pinch points:

$$Pressure_{Max}\left[rac{N}{mm^2}
ight] = rac{Force_{Peak}[N]}{Area_{Contact}[mm^2]}$$

WARNING: General Hazard Warning!

- Only trained operators should operate this equipment.
- All service and maintenance must be done by approved personnel.

- Use this product only in environments and operating conditions that are approved in this manual.
- Never install or operate equipment that appears to be damaged.
- Make sure that the product is securely mounted before you operate it.
- Make sure that all pneumatic lines are securely connected.
- Use care when you move the stage or you could negatively affect the performance of it.

WARNING: Trip Hazard!

Route, house, and secure all cables, duct work, air, or water lines. Failure to do so could introduce trip hazards around the system that could result in physical injury or could damage the equipment.

Electrical Warnings

To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

DANGER: Electrical Shock Hazard!

- Stage motor phase voltage levels could be hazardous live.
- Personnel are protected from hazardous voltages unless electrical interconnections, protective bonding (safety ground), or motor/stage enclosures are compromised.

- Do not connect or disconnect stage/motor interconnections while connected to a live electrical power source.
- Before you set up or do maintenance, disconnect electrical power.
- It is the responsibility of the End User/System Integrator to make sure that stages are properly connected and grounded per Engineering Standards and applicable safety requirements.
- It is the responsibility of the End User/System Integrator to configure the system drive or controller within the Aerotech motor/stage electrical and mechanical specifications.

Motor-Related Warnings

Aerotech motors are capable of producing high forces and velocities. Obey all warnings and all applicable codes and standards when you operate a system that incorporates Aerotech motors.

DANGER: Mechanical Hazard!

Personnel must be made aware of the mechanical hazards during set up or when you do service to the stage.

- When the system is not electrically energized (disabled), linear stage/motors can still
 allow a stage carriage to move freely. This can create mechanical hazards such as
 pinch or crush points.
- Unintentional manual movement into the stage "end-of-travel" stops, could damage the stage or undo precision alignments.
- Stage movement could create pinch points, entanglement hazards, or rotational mechanical hazards.

DANGER: Hot Surface Hazard!

- The stage/motor frame temperature could exceed 70°C in some applications.
- Do not touch the stage/motor frame while it is in operation.
- Wait until the stage/motor has cooled before you touch it.

DANGER: Risk in Explosive Atmosphere!

- Standard Aerotech stage/motors are not rated for applications with explosive atmospheres such as airborne dust or combustible vapors.
- Do not operate stage/motors outside of Aerotech environmental specifications.

DANGER: Magnetic Field Hazard!

Aerotech stage/motors contain magnets which can present a Magnetic Field Hazard.

- Do not disassemble a stage motor under any circumstances.
- Strong magnetic fields could interfere with external/internal medical devices.
- Strong magnetic fields could present mechanical hazards such as pinch points.

Pinch Points

A pinch point is a mechanical hazard that can occur when there are exposed parts of the stage or system that can move. For example, the travel of a stage tabletop could expose the user to a pinch point between the tabletop and the stage housing. The images that follow will show you typical external and internal pinch point locations.

DANGER: Mechanical Hazard!

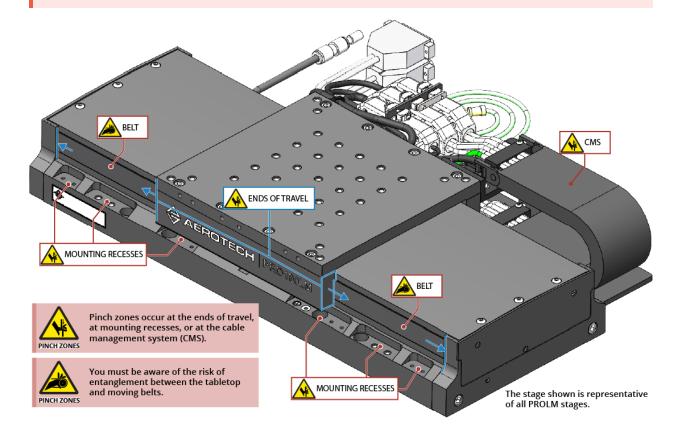

- System travel can cause crush, shear, or pinch injuries.
- Only trained operators should operate this equipment.
- Do not put yourself in the travel path of machinery.
- Restrict access to all motor and stage parts
 - when the system moves under power (during normal operation, for example).
 - when the system is moved manually (during the installation process or when you do maintenance, for example).
- Motors are capable of very high speeds and acceleration rates.

Figure 1: Typical Pinch Point Locations

DANGER: Mechanical Hazards!

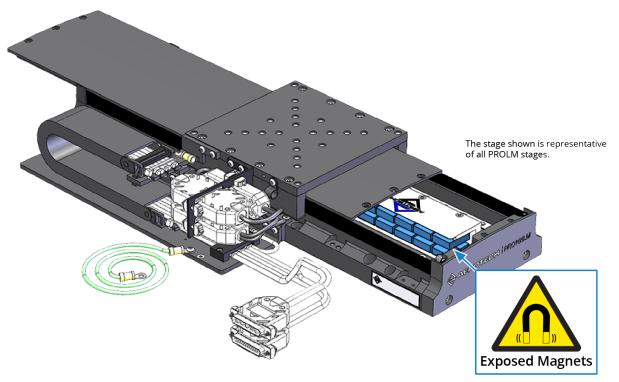
- Pinch Point! The stage tabletop is a potential pinch hazard.
- **Entanglement Hazard!** The side belts are a potential entanglement hazard.

Magnetic Hazards

The magnet track will be exposed when you do maintenance to the system.

DANGER: Magnetic Field Hazard!

- Only qualified, trained personnel should be allowed to have access to exposed magnet tracks during setup or when you do maintenance.
- Strong magnetic fields are present near and inside the magnet track assembly.



- Do no disassemble the magnet track components. If you do so, you will expose your-self to mechanical crush, pinch, or impact hazards.
- Magnetic fields could interfere with external or internal medical devices (pace-makers, for example).
- Magnetic fields can create mechanical hazards (crush, impact, or pinch points, for example).
- Loose items such as metallic tools, watches, or keys could get drawn into and damage the magnet track assembly.

IMPORTANT: Use non-magnetic tools when you install or do service to the stage.

Figure 2: Exposed Magnet Locations

Handling and Storage

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the stage.

- Be careful when you move or transport the stage.
- Retain the shipping materials for future use.
- Transport or store the stage in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

Wear an ESD wrist strap when you handle, install, or do service to the system assembly. You could damage the power supply or drives if you fail to observe the correct ESD practices.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

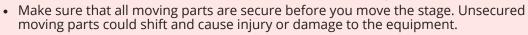
Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the stage is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference.

Each stage has a label listing the system part number and serial number. These numbers contain information necessary for maintenance or system hardware and software updates. Locate this label and record the information for later reference.

Unpacking and Handling

It is the responsibility of the customer to safely and carefully lift and move the stage.



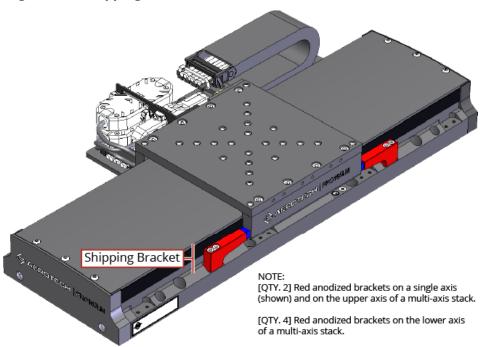
IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

DANGER: **Lifting Hazard!** Use care when you move the stage or you could negatively affect the performance of it.

- Use the correct lifting techniques, mechanical assistance, or additional help to lift or move this product.
- Do not use the cables or the connectors to lift or move this product.

- If the stage is heavy, a single person lift could cause injury. Use assistance when you lift or move it.
 - Refer to Section 2.1. Dimensions for dimensions

Carefully remove the stage from its protective shipping container.


- Lift this product only by the base.
- Use lifting hardware if it has been provided (refer to).
- For multi-axis assemblies, always lift the system by the lower axis.
- Use a cart, dolly, or similar device to move the stage to a new location.

Gently set the stage on a smooth, flat, and clean surface. Use compressed nitrogen or clean, dry, oil-free air to remove any dust or debris that has collected during shipping.

Before you operate the stage, let it stabilize at room temperature for at least 12 hours. This will ensure that all of the alignments, preloads, and tolerances are the same as they were when they were tested at Aerotech.

Each stage has a label listing the system part number and serial number. These numbers contain information necessary for maintenance or system hardware and software updates. Locate this label and record the information for later reference.

Figure 3: Shipping Brackets

Lifting Features

The lifting kit includes four eyebolts and four standoffs. Thread the eyebolts onto the standoffs and thread the standoffs into the stage base. Remove the lifting hardware by turning a wrench on the flats of the standoffs (see). If the stage is part of a multi-axis system, the lifting hardware should be attached to the lower axis. The lifting hardware must be removed before the stage can be operated.

Storage

Store the stage in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the stage in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to Section 1.1. Environmental Specifications

This page intentionally left blank.

Chapter 1: Overview

Table 1-1: Model Numbers and Ordering Options

PRO165LM Linear Motor Stage						
Travel (Required)	Fravel (Required)					
-0100	100 mm travel stage					
-0150	150 mm travel stage					
-0200	200 mm travel stage					
-0250	250 mm travel stage					
-0300	300 mm travel stage					
-0400	400 mm travel stage					
-0500	500 mm travel stage					
-0600	600 mm travel stage					
-0800	800 mm travel stage					
-1000	1000 mm travel stage					
Mounting Orientatio	on (Required)					
	Normal mounting orientation					
-MT1	Side mounted or vertical orientation					
-MT2	Inverted mounting orientation					
Tabletop (Required)						
-TT1	Tabletop with metric dimension mounting					
-TT2	Tabletop with English dimension mounting					
-TT3	Accessory tabletop with mounting pattern for select rotary stages					
-TT4	Tabletop with metric dimension mounting and wiper brushes					
-TT5	Tabletop with English dimension mounting and wiper brushes					
-TT6	Accessory tabletop with mounting for select rotary stages and wipers					
NOTE: -TT1 option requir						
Feedback (Required)						
-E1	Incremental linear encoder; 1 Vpp					
-E2	Incremental linear encoder; 0.1 µm digital TTL output					
-E3	Absolute linear encoder; EnDat 2.2					

PRO165LM Linear I	Motor Stage (continued)				
Cable Management (Required)					
-CMS0	No external CMS, motor/feedback connector bracket on carriage				
-CMS1					
-CMS2	External CMS for lower-axis of two-axis PRO XY assembly				
-CMS3	External CMS for lower-axis of two-axis (XZ or XT) assembly				
-CMS4	External CMS for upper-axis of two-axis PRO XY assembly				
-CMS5	External CMS for upper-axis of two-axis (YZ or YT) assembly				
-CMS6	External CMS for lower-axis of three-axis (XYZ or XYT) assembly				
-CMS7	External CMS for lower-axis of three-axis (XZT) assembly				
Lifting Hardware (Optional)				
-LF	Lifting hardware				
NOTE: Lifting option of XY set (only order on the	nly available on travels 400 mm and greater. Lifting should never be ordered on the upper axis of an ne lower axis).				
ThermoComp™ (Op					
-TCMP	ThermoComp™ integrated temperature compensation, single or lower axis				
	oller must be used with the -TCMP option				
Metrology (Require	<u> </u>				
-PLO	No Metrology performance plots				
-PL1	Uncalibrated with performance plots				
-PL2	Calibrated with performance plots				
Accessories (To be	Ordered as a Separate Line Item)				
ALIGN-NPA	Non-precision XY assembly				
ALIGN-NPAZ	Non-precision XZ or YZ assembly				
ALIGN-PA10	XY assembly; 10 arc sec orthogonality. Alignment to within 7 μ m orthogonality for short travel stages.				
ALIGN-PA10Z	XZ or YZ assembly with L-bracket; 10 arc sec orthogonality. Alignment to within 10 μ m orthogonality for short travel stages.				
ALIGN-PA5	XY assembly; 5 arc sec orthogonality. Alignment to within 3 μ m orthogonality for short travel stages.				
ALIGN-PA5Z	XZ or YZ assembly with L-bracket; 5 arc sec orthogonality. Alignment to within 5 μm orthogonality for short travel stages.				

1.1. Environmental Specifications

WARNING: **General Hazard Warning!** Do not expose this product to environments or conditions outside of the listed specifications. You could damage the equipment if you exceed the environmental or operating specifications.

DANGER: Risk in Explosive Atmosphere!

- Standard Aerotech stage/motors are not rated for applications with explosive atmospheres such as airborne dust or combustible vapors.
- Do not operate stage/motors outside of Aerotech environmental specifications.

Table 1-2: Environmental Specifications

Ambient	Operating: 10° to 35° C (50° to 95° F)
Temperature	The optimal operating temperature is 20° C $\pm 2^{\circ}$ C (68° F $\pm 4^{\circ}$ F). If at any time the operating temperature deviates from 20° C degradation in performance could occur.
	Storage: 0° to 40° C (32° to 104° F) in original shipping packaging
Humidity	Operating: 20% to 60% RH
	Storage: 10% to 70% RH, non-condensing in original packaging.
	The stage should be packaged with desiccant if it is to be stored for an extended time.
Altitude	Operating: 0 m to 2,000 m (0 ft to 6,562 ft) above sea level
	Contact Aerotech if your specific application involves use above 2,000 m or below sea level.
Vibration	Use the system in a low vibration environment. Floor or acoustical vibration can affect system performance. Contact Aerotech for information regarding your specific application.
Protection	These stages have limited protection against dust, but not water. This equates to
Rating	an ingress protection rating of IP50.
Use	Indoor use only

1.2. Accuracy and Temperature Effects

Aerotech products are designed for and built in a 20°C (68°F) environment. Temperature changes could cause a decrease in performance or permanent damage to the stage. At a minimum, the environmental temperature must be controlled to within 0.25°C per 24 hours to ensure the stage specifications are repeatable over an extended period of time. The severity of temperature effects on all specifications depends on many different environmental conditions, which include how the stage is mounted. Contact the factory for more details.

The accuracy specification of stage is measured 25 mm above the table with the stage in an unloaded condition. The stage is assumed to be fully supported by a mounting surface meeting or exceeding the specification in Section 2.2.

The accuracy specifications listed in Section 1.3. assume a 20°C operating environment. If the temperature of the stage differs from 20°C, the encoder scale in the stage will expand or contract at the rate of 3.25 ppm per °C for -E1 and -E2 options, or 10 ppm per °C for the -E3 option.

The ThermoComp™ option is a hardware and software solution that uses the functionality of the Automation1 or A3200 controller to mitigate the effects of changing temperature by detecting and compensating for thermal changes. ThermoComp™ is effective at compensating for both self-heating and environmental temperature changes.

1.3. Basic Specifications

Table 1-3: PRO165LM Series Specifications (-0100 to -0300)

	DD 0465114		0450	0000	0000	0000	
	PRO165LM	-0100	-0150	-0200	-0250	-0300	
Travel		100 mm	150 mm	200 mm	250 mm	300 mm	
Accuracy ⁽¹⁾	Standard	±4 μm	±6 μm	±8 μm	±9 μm	±10 μm	
Accuracy	Calibrated	±1 μm	±1 μm	±1.5 µm	±1.5 µm	±1.5 μm	
Resolution (Minimum	Incremental	5 nm (-E1 Encoder),					
Motion)		10 nm (-E3 Encoder)					
Bidirectional Repeata	ıbility ⁽¹⁾	±0.4 μm	±0.4 μm	±0.5 μm	±0.5 μm	±0.5 μm	
Horizontal Straightne	2SS ⁽¹⁾	±2.5 μm	±3 µm	±4 μm	±5 μm	±6 μm	
Vertical Straightness	(1)	±2.5 μm	±3 µm	±4 μm	±5 μm	±6 μm	
Pitch		29 µrad	29 µrad	40 µrad	46 µrad	58 µrad	
PILCII		(6 arc sec)	(6 arc sec)	(8.2 arc sec)	(9.5 arc sec)	(12 arc sec)	
Roll		29 µrad	29 µrad	40 µrad	46 µrad	58 µrad	
KUII		(6 arc sec)	(6 arc sec)	(8.2 arc sec)	(9.5 arc sec)	(12 arc sec)	
Yaw		29 µrad	29 µrad	40 µrad	46 µrad	58 µrad	
Tavv		(6 arc sec)	(6 arc sec)	(8.2 arc sec)	(9.5 arc sec)	(12 arc sec)	
Maximum Speed ⁽²⁾				2 m/s	,		
Maximum Acceleration	on ⁽²⁾			3 g			
Maximum Force, Con	tinuous			77.7 N			
Load Capacity (3)	Horizontal	45 kg					
Load Capacity (*)	Side	45 kg					
Moving Mass	•			2.5 kg			
Stage Mass		8.2 kg	9.1 kg	9.9 kg	10.7 kg	11.6 kg	
Material		Anodized Aluminum					
Mean Time Between	20,000 Hours						
(1) Cortified with DI 1 or	- 41	·					

⁽¹⁾ Certified with -PL1 option.

⁽²⁾ Requires the selection of an applicable amplifier with sufficient voltage and current.

⁽³⁾ Axis orientation for on-axis loading is listed.

⁽⁴⁾ Specifications are for single-axis systems measured 25 mm above the tabletop; performance of multi-axis system depend upon the payload and workpoint. Consult the Aerotech factory for multi-axis or non-standard applications.

Table 1-4: PRO165LM Series Specifications (-0400 to -1000)

	752 5 665	- peemeation	5 (5 : 5 5 : 5				
	PRO165LM	-0400	-0500	-0600	-0800	-1000	
Travel		400 mm	500 mm	600 mm	800 mm	1000 mm	
Accuracy (1)	Standard	±12 μm	±14 μm	±15.5 μm	±17 μm	±18 μm	
Accuracy	Calibrated	±1.5 µm	±2 μm	±2 μm	±2 μm	±2 μm	
Resolution (Minimum	Incremental		5	nm (-E1 Encode	er),		
Motion)		10 nm (-E3 Encoder)					
Bidirectional Repeata	bility ⁽¹⁾	±0.5 µm	±0.5 µm	±0.5 μm	±0.5 μm	±0.5 μm	
Horizontal Straightne	SS ⁽¹⁾	±8 μm	±9 μm	±10 μm	±12 μm	±14 μm	
Vertical Straightness	(1)	±8 µm	±9 μm	±10 μm	±12 μm	±14 μm	
Pitch		70 µrad	80 µrad	90 µrad	100 µrad	120 µrad	
PILCII		(14.4 arc sec)	(16.5 arc sec)	(18.6 arc sec)	(20.6 arc sec)	(24.7 arc sec)	
Roll		70 µrad	80 µrad	90 µrad	100 µrad	120 µrad	
KOII		(14.4 arc sec)	(16.5 arc sec)	(18.6 arc sec)	(20.6 arc sec)	(24.7 arc sec)	
Yaw		70 µrad	80 µrad	90 µrad	100 µrad	120 µrad	
YdW		(14.4 arc sec)	(16.5 arc sec)	(18.6 arc sec)	(20.6 arc sec)	(24.7 arc sec)	
Maximum Speed ⁽²⁾		2 m/s					
Maximum Acceleration	on ⁽²⁾	3 g 77.7 N					
Maximum Force, Con	tinuous						
Load Capacity (3)	Horizontal	45 kg					
Load Capacity ⁽³⁾	Side	45 kg					
Moving Mass				2.6 kg			
Stage Mass		13.3 kg	14.9 kg	16.6 kg	20.0 kg	23.3 kg	
Material	Anodized Aluminum						
Mean Time Between			20,000 Hours				

⁽¹⁾ Certified with -PL1 option.

⁽²⁾ Requires the selection of an applicable amplifier with sufficient voltage and current.

⁽³⁾ Axis orientation for on-axis loading is listed.

⁽⁴⁾ Specifications are for single-axis systems measured 25 mm above the tabletop; performance of multi-axis system depend upon the payload and workpoint. Consult the Aerotech factory for multi-axis or non-standard applications.

1.4. Vacuum Operation

There are two vacuum preparation options:

- Low Vacuum (for use in atmospheric pressures down to 10⁻³ Torr)
- High Vacuum (preparation for environments from 10-3 Torr down to 10-6 Torr).

Special preparations include:

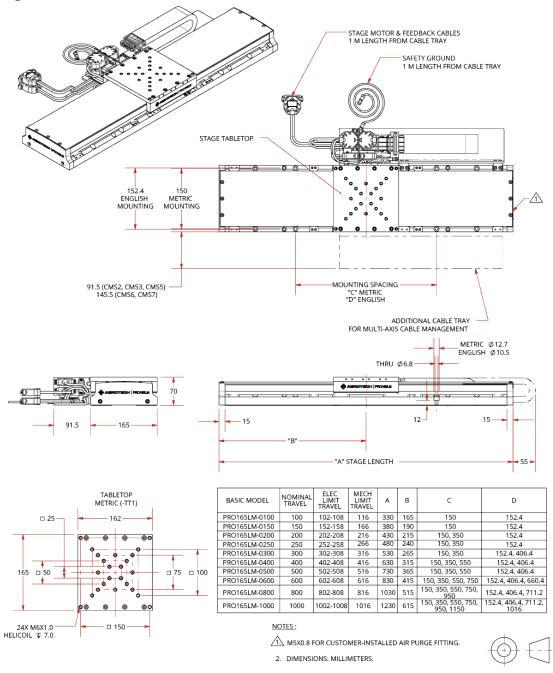
- Parts are lubricated with vacuum-compatible lubricants.
- Materials, fasteners, and coatings are selected to be compatible with the specified level of vacuum.
- High-vacuum systems are designed to eliminate trapped volumes.
- Prior to assembly, stage parts are thoroughly cleaned in a clean environment.
- The stage is packaged in a special polyethylene bag.

Vacuum Guidelines

To ensure that the stage will continue to perform well in the vacuum environment, use the guidelines that follow (in addition to standard handling, installation, and lubrication guidelines outlined in this manual).

- 1. Do not remove the stage from its sealed bag until it is ready to use.
- 2. Always handle the stage in a clean environment and use powder-free polyethylene gloves to prevent any contaminants from adhering to the surface of the stage.
- 3. During installation, use cleaned, vented, stainless steel fasteners to secure the stage.
- 4. Reduced air pressure eliminates significant convective heat transfer. This, coupled with the viscous vacuum-compatible lubricants, could result in excessive motor operating temperatures. Because of this, consider all continuous torque ratings to be 40 to 60% lower than the value specified for operation in normal atmospheric environment. Reduce motor usage accordingly.
- 5. We recommend that you use a small quantity of Braycote® 602EF grease or a compatible substitute of equal quality lubricant in vacuum applications.
- 6. To reduce outgassing during the initial pump-down to vacuum pressure, Aerotech recommends that you bake out vacuum systems when you first install them into the vacuum chamber. Bake the vacuum components at 60 °C for 24 to 48 hours to desorb water vapor from surfaces and degas polymers (such as cable insulation).

This page intentionally left blank.


Chapter 2: Installation

IMPORTANT: The stage installation must be in accordance with the instructions provided by this manual and any accompanying documentation. Failure to follow these instructions could result in injury or damage to the equipment.

2.1. Dimensions

Figure 2-1: PRO165LM Dimensions

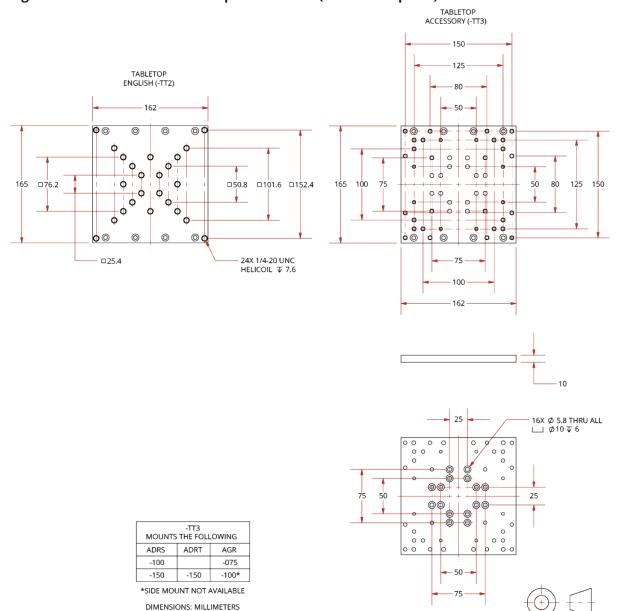


Figure 2-2: PRO165LM Tabletop Dimensions (-TT2/-TT3 Option)

26

2.2. Securing the Stage to the Mounting Surface

DANGER: Mechanical Hazard!

Personnel must be made aware of the mechanical hazards during set up or when you do service to the stage.

• Do not manually move the stage if it is connected to a power source.

- The stage must be mounted securely. Improper mounting can result in injury and damage to the equipment.
- When you move the tabletop manually to do maintenance, this could expose the operator to pinch points. Refer to Pinch Points on Page 12.

The mounting surface must be flat and have adequate stiffness to achieve the maximum performance from the stage. When it is mounted to a non-flat surface, the stage can be distorted while the mounting screws are tightened. This distortion will decrease overall accuracy. Adjustments to the mounting surface must be done before the stage is secured.

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Use precision flatstones on the mounting surface to remove any burrs or high spots. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

IMPORTANT: The stage is precision machined and verified for flatness prior to product assembly at the factory. If machining is required to achieve the desired flatness, it should be performed on the mounting surface rather than the stage. Shimming should be avoided if possible. If shimming is required, it should be minimized to retain maximum rigidity of the system.

Table 2-1: Stage Mounting Surface Flatness Requirement

Stage Travel		Flatness Requirement
All Travels		7.5 µm

If necessary, manually move the stage table to access the mounting holes along the edges of the stage. This stage is designed to use socket head cap screws (SHCS) to secure the base to the mounting surface.

IMPORTANT: The stage table may offer a considerable amount of resistance when it is moved manually.

- If the stage is not connected to a power source, the stage should move freely by hand.
- Do not attempt to manually move the stage if it is connected to a power source.

Tightening torque values for the mounting hardware are dependent on the properties of the surface to which the stage is being mounted. Values provided in Table 2-2 are typical values and may not be accurate for your mounting surface. Refer to Section 2.1. for mounting locations and dimensions.

Table 2-2: Stage to Mounting Surface Hardware

Mounting Hardware	Typical Screw Torque
M6 x 22 mm (or 1/4" x 7/8") SHCS with flat washers	7 N·m [5 ft·lb]

2.3. Attaching the Payload to the Stage

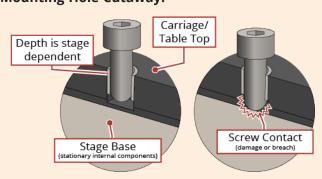
Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

Use a representative payload during start-up to prevent accidental damage to the stage and the payload. Proceed with the electrical installation and test the motion control system in accordance with the system documentation. Document all results for future reference. For information on electrical installation refer to Chapter 3: Electrical Installation and the documentation delivered with the stage.

IMPORTANT: If your PRO165LM was purchased with Aerotech controls, it could have been tuned with a representative payload based on the information provided at the time of order. If you start the PRO165LM without a payload, the servo gains provided by Aerotech with the shipment may not be appropriate and servo instability can occur. Refer to the controller help file for tuning assistance.

The payload must be flat, rigid, and comparable to the stage in quality to maintain optimum performance.

Table 2-3: Payload Mounting Surface Flatness Requirement


Stage Travel	Flatness Requirement
All Travels	12 µm

WARNING: General Hazard Warning!

Be careful when you attach the payload to the stage mounting surface.

- If a mounting screw extends through the carriage/table top, it can affect travel and damage the stage.
- Refer to the dimensions in Section 2.1. for maximum allowable thread engagement.
- Mounting Hole Cutaway:

Applied loads should be symmetrically distributed whenever possible. The payload should be centered on the stage mounting surface and the entire stage should be centered on the support structure.

For a cantilevered load, first determine if it is a **Horizontal** or a **Side** cantilever system (refer to Figure 2-3).

The **Horizontal** curve assumes a horizontal stage orientation with the payload offset extending outwards along the surface of the tabletop.

The **Side** curve is for situations where the stage is mounted on its side and the offset load extends outwards in a direction normal to the tabletop surface.

Measure the cantilever length, then find the corresponding load value from Figure 2-4.

Figure 2-3: Stage Orientations

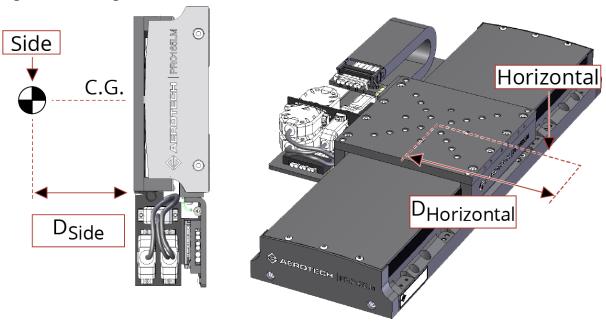
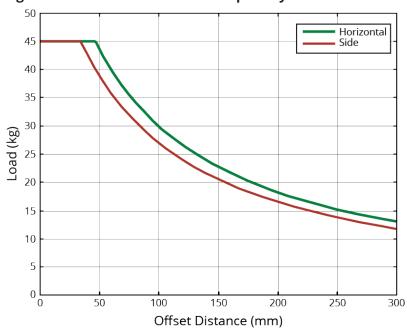



Figure 2-4: Cantilevered Load Capability

2.3.1. Speed Capability

To help ensure safety and prevent damage to the system, speed limitations are required for the PRO165LM. Achievable speeds are application-dependent and determined by factors such as travel length, payload, amplifier sizing and duty cycle. The Motor Sizer application supplied by Aerotech at https://www.aerotech.com/resources/motor-sizer.aspx can be used to estimate allowable speeds and accelerations based on these parameters. Consult with an Aerotech Applications Engineer to specify the system configuration for optimum performance.

Chapter 3: Electrical Installation

DANGER: Electrical Shock Hazard!

- Stage motor phase voltage levels could be hazardous live.
- Personnel are protected from hazardous voltages unless electrical interconnections, protective bonding (safety ground), or motor/stage enclosures are compromised.

- Do not connect or disconnect stage/motor interconnections while connected to a live electrical power source.
- Before you set up or do maintenance, disconnect electrical power.
- It is the responsibility of the End User/System Integrator to make sure that stages are properly connected and grounded per Engineering Standards and applicable safety requirements.
- It is the responsibility of the End User/System Integrator to configure the system drive or controller within the Aerotech motor/stage electrical and mechanical specifications.

WARNING: General Hazard Warning!

Applications that require access to the PRO165LM must be restricted to qualified and trained personnel. The system integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements when they integrate the PRO165LM into a completed system. Failure to do so could expose the operator to electrical or mechanical hazards.

Electrical installation requirements will depend on the ordered product options. Installation instructions in this section are for Aerotech products equipped with standard Aerotech motors intended for use with an Aerotech motion control system. Contact Aerotech for further information on products that are otherwise configured.

Aerotech motion control systems are adjusted at the factory for optimum performance. When the PRO165LM is part of a complete Aerotech motion control system, setup should only require that you connect the stage to the appropriate drive chassis with the cables provided. Labels on the system components should indicate the appropriate connections.

If system level integration was purchased, an electrical drawing that shows the system interconnects has been supplied with the system (separate from this documentation).

The electrical wiring from the motor and encoder are integrated at the factory. Refer to the sections that follow for standard motor wiring and connector pinouts.

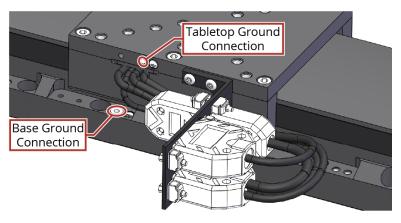
IMPORTANT: Refer to the controller documentation to adjust servo gains for optimum velocity and position stability.

3.1. Motor and Feedback Connectors

Stages equipped with standard motors and encoders come from the factory completely wired and assembled.

IMPORTANT: Refer to the other documentation accompanying your Aerotech equipment. Call your Aerotech representative if there are any questions on system configuration.

IMPORTANT: If you are using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.


The protective ground connection of the PRO165LM provides motor frame ground protection only. Additional grounding and safety precautions are required for applications requiring access to the stage while it is energized. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

DANGER: Electrical Shock Hazard!

- The protective ground connection must be properly installed to minimize the possibility of electric shock.
- The stage controller must provide over-current and over-speed protection. Failure to do so could cause electric shock or damage to the equipment.

Figure 3-1: Ground Connection Points for the -CMS0 Option

Table 3-1: Motor Connector Pinout

Pin	Description	Connector
Case	Shield Connection	
A1	Motor Phase A	
A2	Motor Phase B	
А3	Motor Phase C	
1	Reserved	
2	Reserved	₩
3	Reserved	4 • · · · · · · · · · · · · · · · · · ·
4	Reserved	\$
5	Reserved	
A4	Frame Ground (motor protective ground)	

Table 3-2: General Motor Connector Pinout (for Z or T Axes)

Pin	Description	Wire Gauge AWG [mm²]	Connector
Case	Shield Connection	16 [1.31]	
A1	Motor Phase A	16 [1.31]	
A2	Motor Phase B	16 [1.31]	
A3	Motor Phase C	16 [1.31]	
1	Reserved		
2	Reserved		S
3	Reserved		4 • 1 5 • N
4	Reserved		\$
5	Reserved		
A4	Frame Ground (motor protective ground)	16 [1.31]	

Table 3-3: Mating Connector Part Numbers for the Motor Connector

O		
Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK00656	Amphenol #17E-1726-2
Sockets [QTY. 4]	ECK00659	ITT Cannon #DM53744-6
Connector	ECK00657	ITT Cannon #DBM9W4SA197

Table 3-4: Feedback Connector Pinout

Table 3		
Pin	Description	Connector
Case	Shield Connection	
1	Reserved	
2	Over-Temperature Thermistor Sensor	
3	5V Power Supply Input (connected internally to Pin-16)	
4	Reserved	
5	Hall Effect Sensor (Phase B)	
6	MRK- (Encoder Marker-)	
7	MRK+ (Encoder Marker+)	
8	Reserved	14 •1
9	Reserved	
10	Hall Effect Sensor (Phase A)	
11	Hall Effect Sensor (Phase C)	
12	+/CW LMT (End-of travel limit signal that indicates maximum permitted stage	
12	travel in the "machine positive" or "machine clockwise" direction.)	
13	Reserved	
14	COS+ (Encoder Cosine+)	
15	COS- (Encoder Cosine-)	
16	5V Power Supply Input (connected internally to Pin-3)	
17	SIN+ (Encoder Sine+)	
18	SIN- (Encoder Sine-)	25 •13
19	Reserved	
20	Common ground (connected internally to Pin-21)	
21	Common ground (connected internally to Pin-20)	
22	Reserved	
23	Reserved	
24	-/CCW LMT (End-of travel limit signal that indicates maximum permitted stage	
	travel in the "machine negative" or "machine counter-clockwise" direction.)	
25	Reserved	

Table 3-5: Mating Connector Part Numbers for the Brushless Motor Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Socket D-Connector	ECK00300	FCI DB25S064TLF
Backshell	ECK00656	Amphenol 17E-1726-2

Table 3-6: Feedback Connector Pinout (-E3 Option)

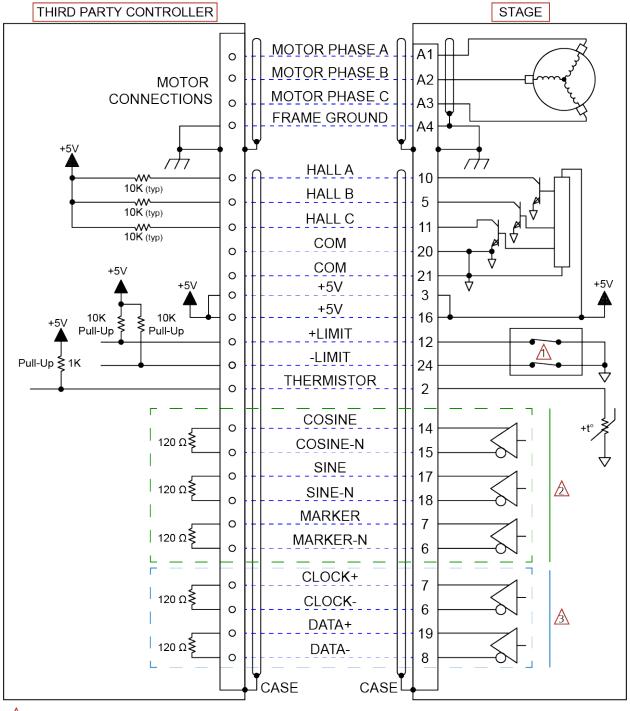
Pin	Description	Connector
Case	Shield Connection	
1	Reserved	
2	Over-Temperature Thermistor Sensor	
3	5V Power Supply Input (connected internally to Pin-16)	
4	Reserved	
5	Hall Effect Sensor (Phase B)	
6	CLK- (Absolute Encoder Clock-)	
7	CLK+ (Absolute Encoder Clock+)	14 •1
8	DATA- (Absolute Encoder Data-)	
9	Reserved	
10	Hall Effect Sensor (Phase A)	
11	Hall Effect Sensor (Phase C)	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	
16	5V Power Supply Input (connected internally to Pin-3)	
17	Reserved	
18	Reserved	2 ₅ •13
19	DATA+ (Absolute Encoder Data+)	
20	Common ground (connected internally to Pin-21)	
21	Common ground (connected internally to Pin-20)	
22	Reserved	
23	Reserved	
24	Reserved	
25	Reserved	

Table 3-7: Mating Connector Part Numbers for the Encoder Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Socket D-Connector	ECK00300	FCI DB25S064TLF
Backshell	ECK00656	Amphenol 17E-1726-2

Table 3-8: General Feedback Connector Pinout (for Z or T Axes)

Pin	Description	Wire Gauge AWG [mm²]	Connector
Case	Shield Connection	26 [0.129]	
1	Reserved		
2	Over-Temperature Thermistor Sensor	26 [0.129]	
3	5V Power Supply Input (connected internally to Pin-16)	26 [0.129]	
4	Reserved		
5	Hall Effect Sensor (Phase B)	26 [0.129]	
6	MRK- (Encoder Marker-)	26 [0.129]	
7	MRK+ (Encoder Marker+)	26 [0.129]	
8	Reserved		
9	Reserved		
10	Hall Effect Sensor (Phase A)	26 [0.129]	14 •1
11	Hall Effect Sensor (Phase C)	26 [0.129]	
12	+/CW LMT (End-of travel limit signal that indicates maximum permitted stage travel in the "machine positive" or "machine clockwise" direction.)	26 [0.129]	
13 ⁽¹⁾	Brake -	26 [0.129]	
	Reserved		
14	COS+ (Encoder Cosine+)	26 [0.129]	
15	COS- (Encoder Cosine-)	26 [0.129]	
16	5V Power Supply Input (connected internally to Pin-3)	26 [0.129]	
17	SIN+ (Encoder Sine+)	26 [0.129]	• 40
18	SIN- (Encoder Sine-)	26 [0.129]	25 •13
19	Reserved		
20	Common ground (connected internally to Pin-21)	26 [0.129]	
21	Common ground (connected internally to Pin-20)	26 [0.129]	
22	Reserved		
23	Reserved		
24	-/CCW LMT (End-of travel limit signal that indicates maximum permitted stage travel in the "machine negative" or "machine counter-clockwise" direction.)	26 [0.129]	
25 ⁽¹⁾	Brake +	26 [0.129]	
	Reserved		
(1) Brake	pins on the Z or T Axes, otherwise Reserved.		<u> </u>


Table 3-9: Mating Connector Part Numbers for the Encoder Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Socket D-Connector	ECK00300	FCI DB25S064TLF
Backshell	ECK00656	Amphenol 17E-1726-2

3.2. Motor and Feedback Wiring

Shielded cables are required for the motor and feedback connections.

Figure 3-2: **Motor and Feedback Wiring**

1 Over-travel limit switches are normally-closed.

-E1/-E2 option

-E3 option

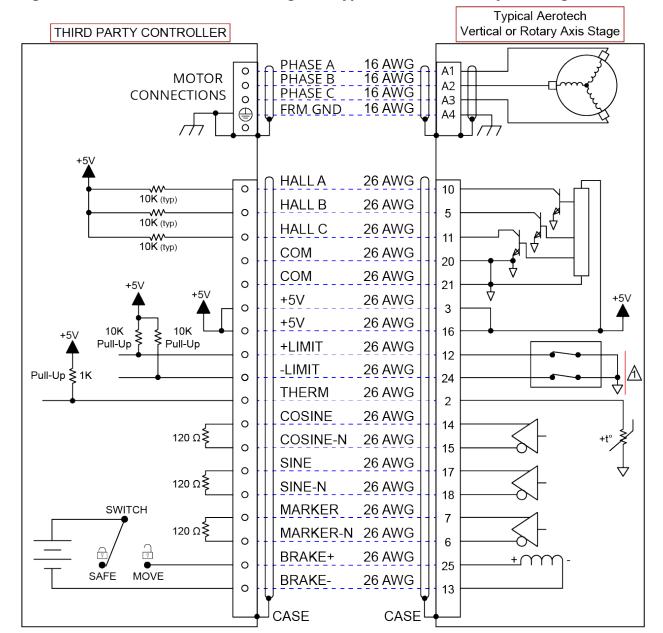


Figure 3-3: Motor and Feedback Wiring for a Typical Vertical or Rotary Axis Stage

↑ Stage over-travel limits are configured N.C. at the factory

3.3. Motor and Feedback Specifications

IMPORTANT: All 5 V supplies share one common connection within the stage.

Table 3-10: Hall-Effect Sensor Specifications

	Specification
Supply Voltage	5 V ±5%
Supply Current	50 mA
Output Type	Open Collector
Output Voltage	24 V max (pull up)
Output Current	5 mA (sinking)

Table 3-11: Thermistor Specifications

	Specification	
Polarity	Logic "0" (no fault)	
	Logic "1" (over-temperature fault)	
Cold Resistance	~100 Ω	
Hot Resistance	~10 K	
Note: 1K pull-up to +5V recommended.		

Table 3-12: Encoder Specifications

	Specification
Supply Voltage	5 V ±5%
Supply Current	250 mA (typical)
Output Signals	Sinusoidal Type (Incremental) : Analog: SIN+, SIN-, COS+, COS-, 1V _{pk-pk} ; Digital (RS422): MRK+, MRK- signals.
Output Signals (Differential)	Digital Output (Incremental) : TTL Encoder line-driver signals; RS422/485 compatible
	Serial Output (Absolute): EnDat 2.2 with 36 bit word

Table 3-13: Linear Encoder Resolution Specifications

Encoder Option	Fundamental Signal Period	Digital Resolution
-E1		
-E1 with x4000 Interpolation ⁽¹⁾		5 nm
-E1 with x16000 Interpolation ⁽¹⁾	20 μm	1.25 nm
-E2 ⁽¹⁾		100 nm
-E3		1 nm
1. Quadrature decoding included in interpolated i	resolution calculations	

Table 3-14: Limit Switch Specifications

Tuble 5 14. Elline Switch Specifications		
	Specification	
Supply Voltage	5 V ±5%	
Supply Current	25 mA	
Output Type	Open Collector, Current Sinking, 24 VDC Max., 25 mA max.	
	Normally Closed (NC)	
Output Polarity	Sinks current to ground (Logic "0") when not in limit (limit not active).	
(Factory Configured)	 High impedance (Logic "1") when in limit (limit active). Third party controller LIMIT inputs typically require 10 kΩ pull-up to logic VDC supply. 	
 If the PRO165LM is drivered at low speeds. 	ven beyond the electrical limit, it will encounter a mechanical stop. This could damage the stage,	

Table 3-15: PRO165LM Motor Specifications (BLMC-142-A)

Table 3-13. PROTO	SEIN MOTOL SPC	Cifications (BLIMC-142-A)
	•	BLMC-142
Performance Specifica	ations	
Continuous Force, 1.4 bar (20 psi)	N (lb)	120.3 (27.0)
Continuous Force, No Forced Cooling	N (lb)	77.7 (17.5)
Electrical Specification	ns	
BEMF Constant (line- line, max)	V/(m/s) (V/(in/s))	21.28 (0.54)
Continuous Current 1.4 bar (20 psi)	A _{pk} (A _{rms})	6.50 (4.60)
Continuous Current, No Forced Cooling	A _{pk} (A _{rms})	4.20 (2.97)
Peak Current, Stall	A _{pk} (A _{rms})	26.00 (18.38)
Force Constant,	N/A _{pk} (lb/A _{pk})	18.51 (4.16)
Sine Drive	N/A _{rms} (lb/A _{rms})	26.17 (5.88)
Motor Constant	N/√W (lb/√W)	8.24 (1.85)
Resistance, 25°C (line- line)	Ω	4.8
Inductance (line-line)	mH	1.33
Thermal Resistance, 1.4 bar (20 psi)	°C/W	0.47
Thermal Resistance, No Forced Cooling	°C/W	1.12
Maximum Bus Voltage	V _{DC}	340
Magnetic Pole Pitch	mm (in)	25 (0.98)

⁽¹⁾ Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature.

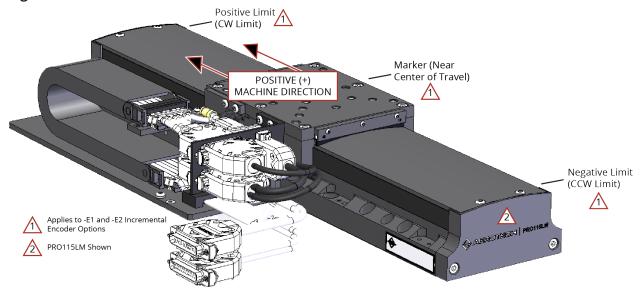
⁽²⁾ All performance and electrical specifications have a tolerance of $\pm 10\%$.

⁽³⁾ Values shown @ $100 \,^{\circ}$ C rise above a $25 \,^{\circ}$ C ambient temperature, with motor mounted to the specified aluminum heat sink.

⁽⁴⁾ Peak force assumes correct rms current; consult Aerotech.

⁽⁵⁾ Force constant and motor constant specified at stall

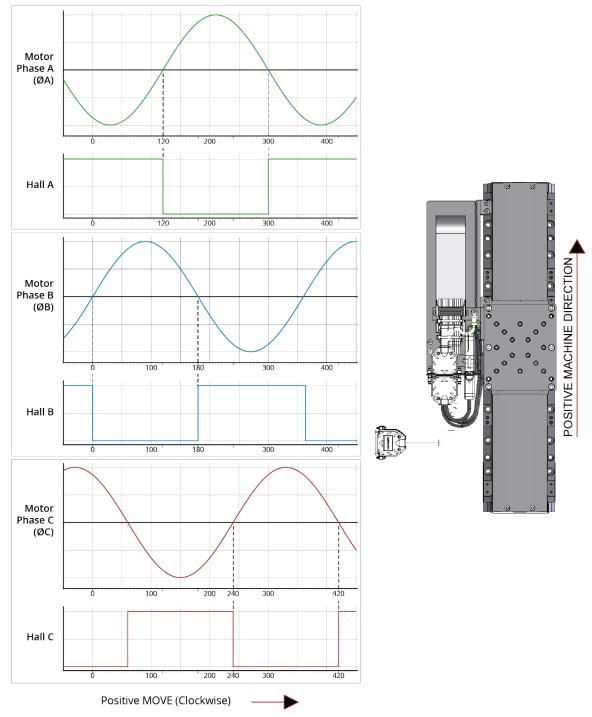
⁽⁶⁾ All Aerotech amplifiers are rated Apk; use force constant in N·m/Apk when sizing.


3.4. Limits, Marker, and Machine Direction

Aerotech stages have both a positive and negative *Machine Direction* and a positive and negative *Programming Direction*.

Machine Direction: The machine direction is defined by how the encoder and motor are mounted and the electrical wiring connections in the stage.

Programming Direction: Your system controller defines the programming direction of the stage and is application specific. A positive programmed move may or may not agree with the machine positive direction. Refer to your programming help documentation for more information.


Figure 3-4: Machine Direction

3.5. Motor and Feedback Phasing

Motor phase voltage is measured relative to the virtual wye common point.

Figure 3-5: Hall Phasing Diagram

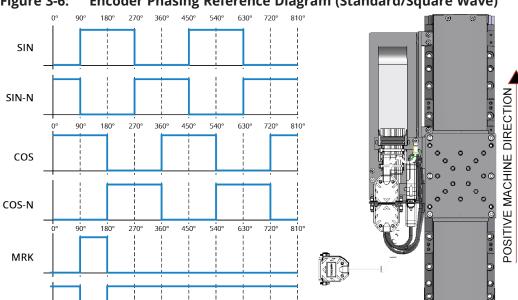
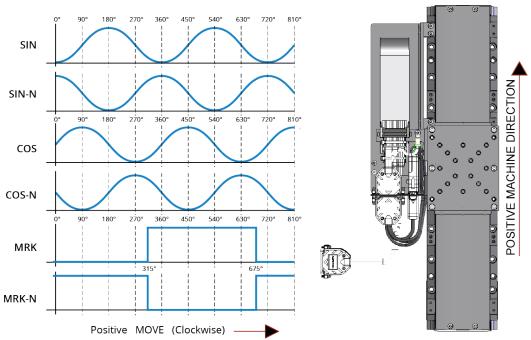



Figure 3-6: Encoder Phasing Reference Diagram (Standard/Square Wave)

Positive MOVE (Clockwise)

MRK-N

This page intentionally left blank.

Chapter 4: Maintenance

IMPORTANT: Read the Safety Procedures and Warnings (on Page 8) before you do maintenance to the stage.

IMPORTANT: Keep the bearing area free of foreign matter and moisture or the performance and life expectancy of the stage will be reduced.

4.1. Service and Inspection Schedule

Inspect the PRO165LM at least once per month. The need for a longer or shorter inspection interval will depend on the application and conditions, such as the duty cycle, speed, and environment.

Monthly inspections should include but not be limited to:

- Visually inspect the stage and cables.
- Re-tighten loose connectors.
- Replace or repair damaged cables.
- Clean the PRO165LM and any components and cables as needed.
- Repair any damage before operating the PRO165LM.
- Inspect and perform an operational check on all safeguards and protective devices.

4.2. Cleaning and Lubrication

DANGER: **Electrical Shock Hazard!** Before you do maintenance to the equipment, disconnect the electrical power.

DANGER: **Mechanical Hazards!** When you move the tabletop manually to do maintenance, this could expose the operator to pinch points. Refer to Pinch Points on Page 12.

- **Pinch Point!** The stage tabletop can present a pinch hazard.
- Entanglement Hazard! The side belts can present an entanglement hazard.

DANGER: Magnetic Field Hazard! When you move the tabletop manually to do maintenance, this could expose the operator to the magnet track. Refer to Magnetic Hazards on Page 13.

IMPORTANT: Wear appropriate personal protective equipment (PPE) when you use cleaning solvents or lubricants.

In general, if the stage operates in a clean environment, it should be cleaned and lubricated annually or every 500 km (whichever comes first). For stages that are operated under conditions with excessive debris, the stage should be cleaned every six months. For high-speed applications (those near max speed at a duty cycle of 50%), more frequent maintenance with standard lubricants will be required.

When you clean and/or lubricate components of the PRO165LM series stage:

- 1. Use a clean, dry, soft, lint-free cloth for cleaning.
- 2. Before you use a cleaning solvent on any part of the stage, blow away small particles and dust with clean, dry, compressed air.
- 3. Take the opportunity during the lubrication procedure to inspect the motion guides or bearings for any damage or signs of wear.
- 4. In applications that have multiple stages bolted together to form multi-axis systems, the orthogonality can be lost if the stage tables of the support stages are loosened. Precision aligned stages should not be loosened or disassembled.
- 5. We recommend that you do not disassemble the stage beyond the instructions given in this manual. Proper assembly and calibration can only be done at the factory. Contact Aerotech for more information.

Cleaning

Use isopropyl alcohol if you must use a solvent to clean the stage. Harsher solvents, such as acetone, could damage the plastic and end caps on the bearing trucks.

WARNING: **General Hazard Warning!** Make sure that all solvent has completely evaporated before you move the stage.

Lubrication

You should only use Kluberplex BEM 34-132 as the standard lubricant for PRO165LM **second generation** stages. Second generation stages can be distinguished from first generation stages by the curved hardcover on the second generation stage.

IMPORTANT: First Generation stages were manufactured with THK AFE-CA grease as the standard lubricant. THK AFE-CA grease is not chemically compatible with Kluberplex BEM 34-132 and the two should not be used interchangeably. First generation stages in the field should continue to use THK AFE-CA grease for regular maintenance lubrication.

If the application process uses only a small portion of travel for most of the duty cycle, periodically drive the stage through full travel to redistribute the lubrication in the bearings.

IMPORTANT: During the lubrication procedure, inspect the linear motion guides for damage or signs of wear.

- 1. Remove power to the stage.
- 2. Remove the cover attached to the rear endplate (Figure 4-1).
- 3. Remove the screws on the edges of the hardcover (Figure 4-2) and slide it out from under the stage (Figure 4-3). This can be done without removing the table.
- 4. Remove any accumulated dust or debris from the inside of the assembly.
- 5. Remove any dirty or dried lubricant from the linear bearing rails.
- Use a clean, lint-free cloth with a side-to-side motion.
- Use a swab soaked in Isopropyl Alcohol to remove stubborn debris.
- 6. Apply a thin, continuous film of lubricant to the linear bearing guides. Aerotech recommends that you use a good quality, natural bristle artist's brush as an applicator.
- 7. Manually move the stage to the opposite end of travel. This will work the grease into the linear bearing guides.
- 8. Repeat steps 4 through 6 for any areas covered by the original table position.
- 9. Refasten the hardcover.
- 10. Restore power to the stage; drive the stage table back to its original position to redistribute lubricants.

IMPORTANT: For GEN II PRO series stages with travel lengths greater than or equal to 800 mm. The hardcover mounting surfaces in the stage end plates are designed to compensate for the sag of the long hardcover that is caused by gravity. As the mounting screws are tightened, the cover gently conforms to the shape of the end plates. Ensure that the cover is fully seated on the end plate mounting surfaces before you operate the stage. Check each mounting screw for full engagement by tightening the screw while holding the long side of a standard hex wrench.

11. Restore power to the stage and drive the stage table back to its original position to redistribute lubricants.

Figure 4-1: Hardcover Rear End Plate Removal

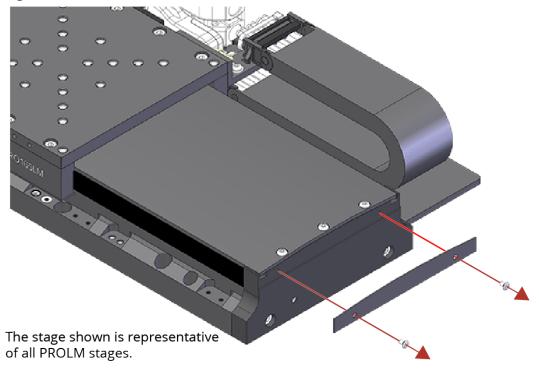


Figure 4-2: Hardcover Screw Removal

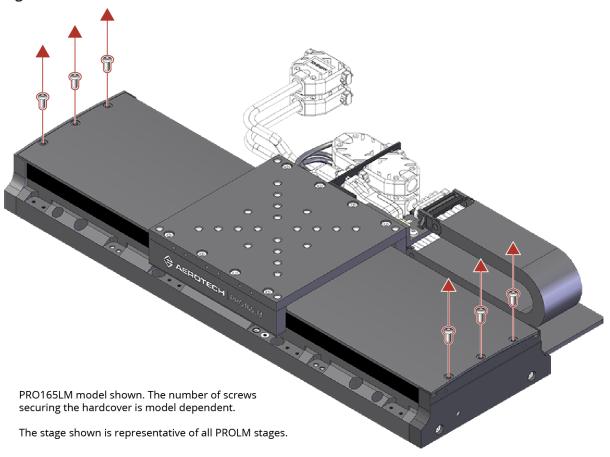
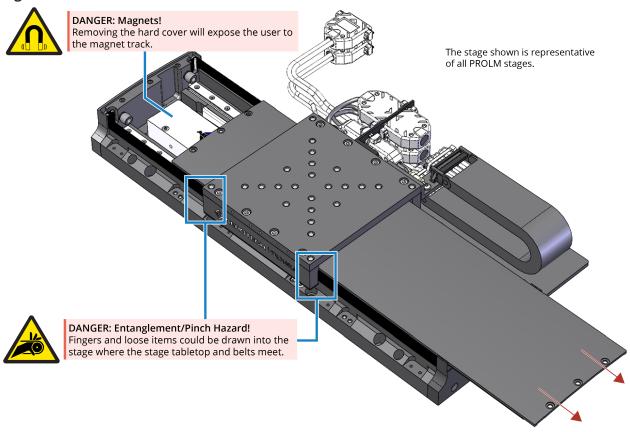
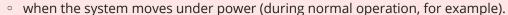



Figure 4-3: Hardcover Removal

4.3. Side Seal Belt Replacement

The side seal belts on this stage protect it from the ingress of dust and debris. Over time, the side seal belts could fray and deteriorate due to normal use. To order replacement side seal belt kits (referred to as "belt replacement kits"), refer to Table 4-1 and contact Aerotech Global Technical Support.

IMPORTANT: Side seal belt replacement should only be attempted on stages that are in working order without any damages other than the worn side seal belts. If there are other issues or inconsistencies in performance, contact Aerotech Global Technical Support.


DANGER: Electrical Shock Hazard!

• Do not connect or disconnect stage/motor interconnections while connected to a live electrical power source.

DANGER: Mechanical Hazard!

- System travel can cause crush, shear, or pinch injuries.
- Restrict access to all motor and stage parts

• when the system is moved manually (during the installation process or when you do maintenance, for example).

IMPORTANT: Do not disassemble the stage more than we recommended in these instructions. Further dis-assembly will result in loss of calibration and alignment.

Table 4-1: Side Seal Belt Replacement Kit Ordering Guide

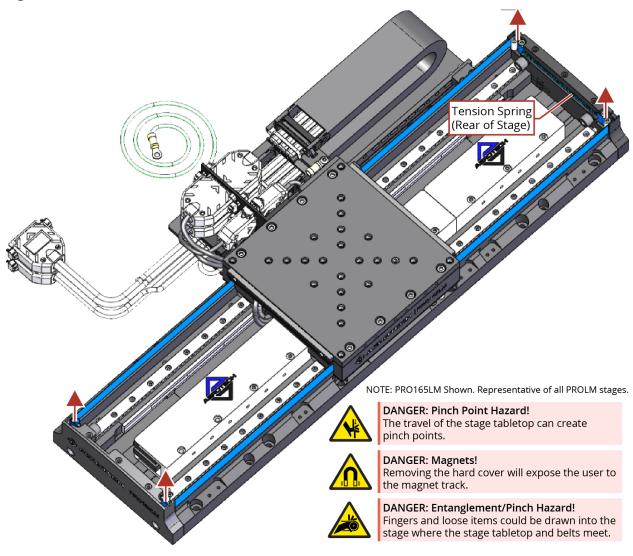
Stage Travel Length	Description	Part Number
≤400 mm	Regular Length Belt Replacement Kit	MFB32957
≥500 mm	Long Length Belt Replacement Kit	MFB32958

Side Seal Belt Replacement

Required Materials:

- Belt Replacement Kit (refer to Table 4-1)
- Instant adhesive super glue (cyanoacrylate glue)
- Sharp scissors (to cut the belt to length)

Replacement Procedure:


- 1. Remove the hardcover. Clean and lubricate the stage (optional but recommended).
 - a. Refer to Section 4.2.
 - b. DO NOT replace hardcover or rear end plate after you clean and lubricate the stage.

IMPORTANT: Inspect the stage for any damage that could have caused the old side seal belts to need replacement. Do not continue with this procedure if there are signs of damage. Contact Aerotech Global Technical Support for assistance.

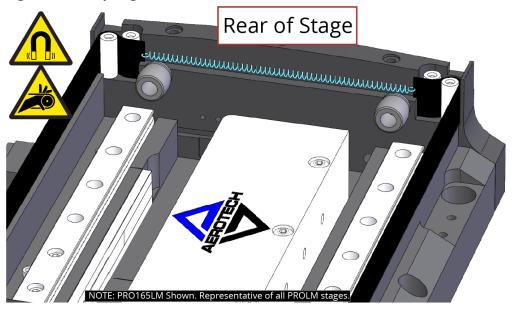
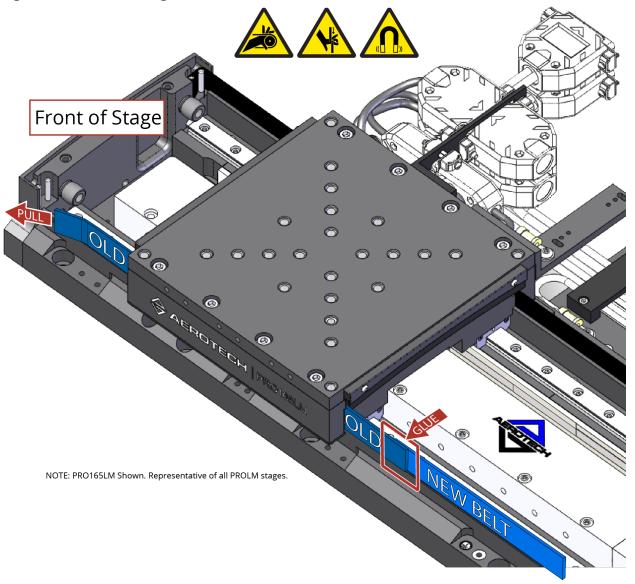

- 2. Remove the old side seal belt.
 - a. DO NOT pull the belt out of the stage table if the belt is intact.
 - b. Note which side of the stage holds the tension spring, this will be referred to as the rear of the stage.
 - c. Pull the belt up at the attachment pins (Figure 4-4).

Figure 4-4: Belt Removal at the Attachment Pins

- 3. Install the new side seal belt at the rear of the stage.
 - a. Slide the belt into the attachment pins at the rear of the stage.
 - b. Refer to Figure 4-5 for the correct belt/pin orientation. The belt and spring will not sit correctly until tension is applied in later steps.


Figure 4-5: Spring Location Detail

There are two methods that you can use to install the new belt through the stage table: **Pull Through Method**: Use this method if the old belt is intact and fed through the stage table. **Manual Feed Method**: Use this method if the old belt is not fed through the stage table.

- 4. (Pull Through Method) Install the new belt through the stage table. Refer to Figure 4-6.
 - a. Make a clean, perpendicular cut on the rear portion of one side of the old side seal belt.
 - b. Attach the loose end of the new side seal belt to the old belt with super glue.
 - i. Overlap the old belt and new belt by 10 mm.
 - ii. The new belt should be on the inside of the old belt.
 - iii. Make sure there are no twists in the glued side seal belts and that the glue connection is secure.
 - c. Carefully pull on the old side seal belt to thread the new side seal belt through the stage table.
 - d. After the new belt is pulled through the stage table, cut the off the old side seal belt from the new belt with a perpendicular cut.
 - e. Repeat steps "a" through "d" on the opposite side of the stage.

Figure 4-6: Pull Through Method

DANGER: You will invalidate the alignment and could invalidate the calibration if you unmount a stage from its mounting surface.

IMPORTANT: A minimum of two (2) people are required to tilt the stage on its side to avoid injury to the user.

- 5. (Manual Feed Method) Install the new belt through the stage table.
 - a. Carefully tilt the stage onto its side. Do not pinch any wires or damage any machined surfaces.
 - b. Manually position the stage table to provide access to the cover plate mounting screws. Refer to Figure 4-7.
 - c. Remove the cover plate.
 - d. Push the new side seal belt around the rollers. Refer to Figure 4-8.
 - e. Reinstall the cover plate and screws.
 - f. Repeat steps "a" through "e" on the opposite side of the stage.

Figure 4-7: Stage Table Cover Plate Removal

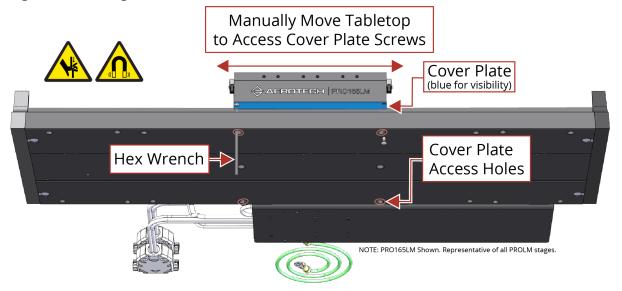
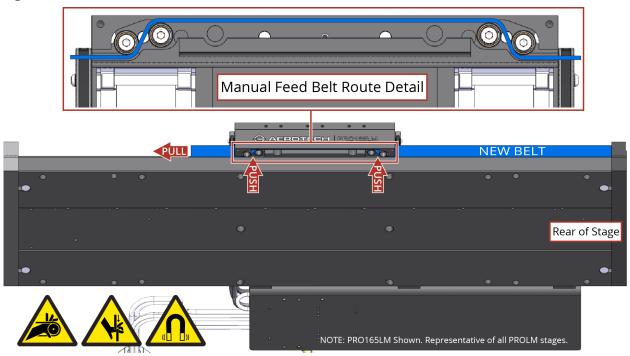
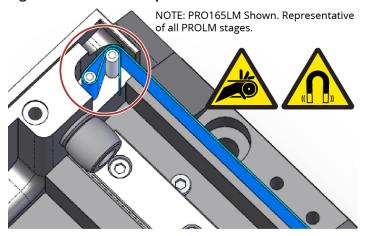
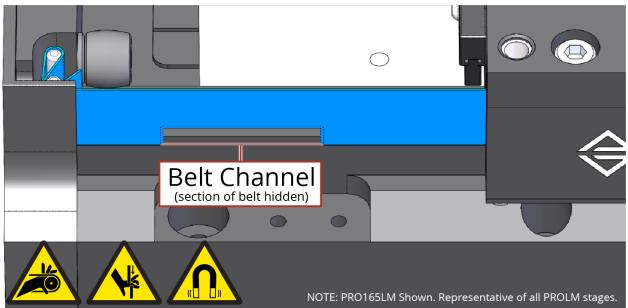




Figure 4-8: Manual Feed Method

- 6. Manually pull the new belt back and forth through the table. Confirm that the side seal belt feeds through smoothly without friction or snagging. If there appears to be damages preventing successful installation, contact Aerotech Global Technical Support .
- 7. Apply equal tension to both loose ends of the new side seal belt to stretch the spring. With the spring stretched, the spring and belt assembly should look like Figure 4-5 at the rear of the stage.
- 8. While you are still holding tension in the belt, wrap the ends of the side seal belt around the front pins as shown in Figure 4-9. The side seal belt should hold the tension without glue if it is properly wrapped around the pins and there is enough spring tension.


Figure 4-9: Belt Wrap

9. Adjust the tension on the left and right sides. Make sure that the spring is centered and stretched. Make sure that there is enough tension in the spring to satisfy all alignment requirements.

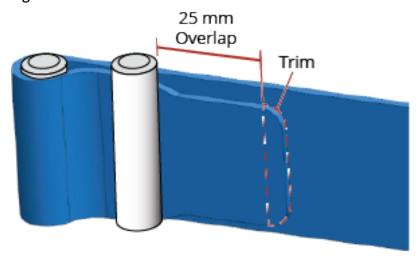

- 10. Trim the side seal belts. Leave approximatley 50 mm of overlap for adjustments and glue.
- 11. With the belts secured in place and holding tension without glue, manually move the stage table through its full travel to confirm belt alignment.
 - a. The side seal belt must run parallel to the direction of travel and the belt must ride within its channel to avoid damaging the belt. Refer to Figure 4-10.
 - b. Adjust the tension and placement of the new side seal belt until it is correctly aligned.

Figure 4-10: Belt Alignment

12. Once the belt is fully adjusted, trim the ends of the belt as shown in Figure 4-11.

Figure 4-11: Belt Trim

- 13. Create a permanent loop on both ends of the side seal belt by applying a small amount of super glue (cyanoacrylate glue) to the overlapping end tabs. The belt can be removed from the pins to avoid getting excess glue on stage components.
- 14. Reinstall the hardcover and rear end plate. Refer to Section 4.2.
- 15. With the stage fully reassembled, do a final test of the belt alignment. Move the stage through full travel to observe if there is interference with the hardcover. Repeat installation steps as needed to improve belt alignment.

4.4. Troubleshooting

Symptom	Possible Cause and Solution
Stage will not move	Shipping brackets still installed. Remove the red anodized shipping brackets.
	In Limit condition. Check limits (refer to Chapter 3: Electrical Installation) and refer to the Controller documentation for polarity and compatibility requirements (Example: voltage requirements).
	Controller trap or fault (refer to the Controller documentation).
Stage moves uncontrollably	Encoder (sine and cosine) signal connections (refer to Chapter 3: Electrical Installation and Controller documentation).
	Motor Connections (refer to Chapter 3: Electrical Installation and the Controller documentation).
Stage oscillates or	Gains misadjusted (refer to the Controller documentation).
squeals	Encoder signals (refer to the Controller documentation).

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

https://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO

Aerotech, Inc. Global Headquarters

TAIWAN

Aerotech Taiwan Full-Service Subsidiary

CHINA

Aerotech China Full-Service Subsidiary

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary

GERMANY

Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description	
2.01	Added Section 4.3.	
2.00	 EU Declaration of Incorporation updated UKCA Declaration of Incorporation added Safety information updated Dimensions updated General product update 	
1.08		
1.07		
1.06		
1.05	Revision changes have been archived. If you need a copy of this revision, contact	
1.04	Aerotech Global Technical Support.	
1.03	Acrotecti Global Technical Support.	
1.02		
1.01		
1.00		

This page intentionally left blank.

Index

		н	
2		Hall-Effect Sensors Specifications	39
2006/42/EC	6	Handling	14
2000,12720	G	Humidity	19
Α		I	
Accuracy and Temperature Effects	20		
Accuracy of the Ballscrew	20	Inspection Schedule	45
acetone (caution)	46	isopropyl alcohol	46
Altitude	19		
Ambient Temperature	19	L	
Attaching the Payload	28	label	14-15
		Lifting Features	15
В		Limit Switch Specifications	39
Belt Replacement		Linear Encoder Specifications	39
Side Seal	50	lubricant	
BLMC-142-A Motor Specifications	40	vacuum	23
Braycote® 602EF	23	Lubrication	46
Braycote 0022	23		
С		М	
cleaning		Motor-Related Warnings	11
mounting surface	27-28	mounting surface	
Cleaning	46	cleaning	27-28
cleaning solvent	46	securing stage	27
J		multiaxis combinations	46
D		Р	
Dimensions	25		
Directive 2006/42/EC	6	packing list	14
		part number	14-15
E		Possible Cause	58
Electrical Installation	31	Protection Rating	19
Electrical Warnings	10	protective ground connection	32
EN 60204-1 2010	6-7	•	
EN ISO 12100 2010	6-7	S	
Encoder Specifications	39	serial number	14-15
EU 2015/863	6	shimming	27
eyebolts	15	Side Seal Belt Replacement	50
		Side Seal Belt Replacement Kit Ordering Guide	50
G		Solution	58
	າາ	Specifications	21
grease	23	BLMC-142-A Motor	40
		Encoder	39
		Hall-Effect Sensors	39

Limit Switch	39
Linear Encoder	39
Thermistor Specifications	39
stabilizing stage	15
stage	
distortion	27
stabilizing	15
standoffs	15
Storage	14
Symptom	58
Т	
Table of Contents	3
Temperature Effects	20
Thermistor Specifications	39
Troubleshooting	58
V	
vacuum guidelines	23
vacuum lubricant (Braycote 602EF)	23
Vacuum Operation	23
Vibration	19
w	
Warnings	8
Warranty and Field Service	59